Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AILargest Subset with sum at most K when one Array element can...

Largest Subset with sum at most K when one Array element can be halved

Given an array arr[] of size N and an integer K, the task is to find the size of the largest subset possible having a sum at most K when only one element can be halved (the halved value will be rounded to the closest greater integer).

Examples:

Input: arr[] = {4, 4, 5}, K = 15
Output: 3
Explanation: 4+4+5 = 13 which is less than 15. So subset can have all elements.

Input: arr[3] = {2, 3, 5}, K = 9
Output: 3
Explanation: 2 + 3 = 5 which is less than 9
2 + 3 + 5 = 10 which is greater than 9, So cannot be part of subset. 
After halving i.e. ceil [5/2] = 3, sum = 2+3+3 = 8 which is less than 9.
So all 3 elements can be part of subset.

Input:  arr[8] = {1, 2, 3, 4, 5, 6, 7, 8}, K = 20
Output: 6
Explanation: 1+2+3+4+5 = 15 which is less than 20
15 + 6 = 21 which is greater than 20.
After halving the value i.e. ceil [6/2] = 3
15 + 3 = 18 which is less than 20. So it can be part of subset.

 

Approach: The given problem can be solved using Sorting method based on the following idea:

In a sorted array keep on performing sum from i = 0 to N-1. If at any moment sum is greater than K, that element can only be included if after halving that value the sum is at most K

Follow the steps mentioned below to solve the problem:

  • Sort the array in ascending order.
  • Declare a variable (say Sum) to maintain the sum.
  • Traverse the array from i = 0 to N-1:
    • Add arr[i] to Sum.
    • If Sum is greater than K, then make arr[i] = ceil(arr[i]/2) and check if that sum is less than K or not.
    • If Sum is less than K then continue iteration.
    • Increment the size of the subset.
  • Return the size of the subset.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find total number of element
int findcount(int arr[], int n, int m)
{
    int ans = n, sum = 0, count = 0;
 
    // Sort the array
    sort(arr, arr + n);
    for (int i = 0; i < n; i++) {
 
        // Round up to the ceil value
        if (sum + (arr[i] + 1) / 2 > m) {
            ans = i;
            break;
        }
        // Sum of the array elements
        sum += arr[i];
 
        // Size of the subset
        count++;
    }
    return count;
}
 
// Driver code
int main()
{
    int N = 8, K = 20;
    int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
 
    // Function call
    cout << findcount(arr, N, K);
    return 0;
}


Java




// JAVA program for the above approach
 
import java.util.*;
class GFG {
 
  // Function to find total number of element
  public static int findcount(int arr[], int n, int m)
  {
    int ans = n, sum = 0, count = 0;
 
    // Sort the array
    Arrays.sort(arr);
    for (int i = 0; i < n; i++) {
 
      // Round up to the ceil value
      if (sum + (arr[i] + 1) / 2 > m) {
        ans = i;
        break;
      }
      // Sum of the array elements
      sum += arr[i];
 
      // Size of the subset
      count++;
    }
    return count;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int N = 8, K = 20;
    int arr[] = new int[] { 1, 2, 3, 4, 5, 6, 7, 8 };
 
    // Function call
    System.out.print(findcount(arr, N, K));
  }
}
 
// This code is contributed by Taranpreet


Python3




# Python solution based on above approach
 
# Function to find total number of element
def findcount(n, k, arr):
   
  # Sort the array
    arr.sort()
    sum = 0
    count = 0
    for i in range(n):
       
      # Round up to the ceil value
        if (sum + (arr[i] + 1) / 2 > k):
            ans = i
            break
             
        # Sum of the array elements
        sum += arr[i]
         
        # Size of the subset
        count = count + 1
    return(count)
     
# driver code
n = 8
k = 20
arr = [1, 2, 3, 5, 4, 6, 7, 8]
result = findcount(n,k,arr)
print(result) 
 
# This code is contributed by greeshmapslp.


C#




// C# program for the above approach
using System;
class GFG {
 
    // Function to find total number of element
    static int findcount(int[] arr, int n, int m)
    {
        int ans = n, sum = 0, count = 0;
 
        // Sort the array
        Array.Sort(arr);
        for (int i = 0; i < n; i++) {
 
            // Round up to the ceil value
            if (sum + (arr[i] + 1) / 2 > m) {
                ans = i;
                break;
            }
            // Sum of the array elements
            sum += arr[i];
 
            // Size of the subset
            count++;
        }
        return count;
    }
 
    // Driver code
    public static void Main()
    {
        int N = 8, K = 20;
        int[] arr = { 1, 2, 3, 4, 5, 6, 7, 8 };
 
        // Function call
        Console.Write(findcount(arr, N, K));
    }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
// JavaScript program for the above approach
 
// Function to find total number of element
function findcount(arr, n, m)
{
    var ans = n;
    var sum = 0;
    var count = 0;
 
    // Sort the array
    arr.sort();
     
    for (var i = 0; i < n; i++) {
 
        // Round up to the ceil value
        if (sum + Math.floor((arr[i] + 1) / 2) > m) {
            ans = i;
            break;
        }
        // Sum of the array elements
        sum += arr[i];
 
        // Size of the subset
        count++;
    }
    return count;
}
 
// Driver code
var N = 8;
var K = 20;
var arr = [ 1, 2, 3, 4, 5, 6, 7, 8 ];
 
// Function call
document.write(findcount(arr, N, K));
 
// This code is contributed by phasing17
</script>


Output

6

Time Complexity: O(N * logN)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
08 Apr, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments