Thursday, January 16, 2025
Google search engine
HomeData Modelling & AIProgram to check if N is a Heptadecagonal Number

Program to check if N is a Heptadecagonal Number

Given an integer N, the task is to check if it is a Heptadecagonal Number or not. If the number N is an Heptadecagonal Number then print “Yes” else print “No”.

Heptadecagonal Number is class of figurate number. It has 17-sided polygon called heptadecagon. The N-th heptadecagonal number counts the seventeen number of dots and all others dots are surrounding with a common sharing corner and make a pattern. The first few heptadecagonal numbers are 1, 17, 48, 94, 155, 231… 

Examples:  

Input: N = 17 
Output: Yes 
Explanation: 
Second heptadecagonal number is 17.

Input: N = 30 
Output: No 

Approach:  

1. The Kth term of the heptadecagonal number is given as
K^{th} Term = \frac{15*K^{2} - 13*K}{2}
 

2. As we have to check that the given number can be expressed as a heptadecagonal number or not. This can be checked as follows – 

=> N = \frac{15*K^{2} - 13*K}{2}
=> K = \frac{13 + \sqrt{120*N + 169}}{30}

3. If the value of K calculated using the above formula is an integer, then N is a Heptadecagonal Number.

4. Else N is not a Heptadecagonal Number.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if the number N
// is a heptadecagonal number
bool isheptadecagonal(int N)
{
    float n
        = (13 + sqrt(120 * N + 169))
          / 30;
 
    // Condition to check if number N
    // is a heptadecagonal number
    return (n - (int)n) == 0;
}
 
// Driver Code
int main()
{
    // Given Number
    int N = 17;
 
    // Function call
    if (isheptadecagonal(N)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to check if the number N
// is a heptadecagonal number
static boolean isheptadecagonal(int N)
{
    float n = (float) ((13 + Math.sqrt(120 * N +
                                       169)) / 30);
 
    // Condition to check if number N
    // is a heptadecagonal number
    return (n - (int)n) == 0;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given Number
    int N = 17;
 
    // Function call
    if (isheptadecagonal(N))
    {
        System.out.print("Yes");
    }
    else
    {
        System.out.print("No");
    }
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program for the above approach
import numpy as np
 
# Function to check if the number N
# is a heptadecagonal number
def isheptadecagonal(N):
 
    n = (13 + np.sqrt(120 * N + 169)) / 30
 
    # Condition to check if number N
    # is a heptadecagonal number
    return (n - int(n)) == 0
 
# Driver Code
N = 17
 
# Function call
if (isheptadecagonal(N)):
    print("Yes")
else:
    print("No")
 
# This code is contributed by PratikBasu


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to check if the number N
// is a heptadecagonal number
static bool isheptadecagonal(int N)
{
    float n = (float) ((13 + Math.Sqrt(120 * N +
                                       169)) / 30);
 
    // Condition to check if number N
    // is a heptadecagonal number
    return (n - (int)n) == 0;
}
 
// Driver Code
public static void Main(string[] args)
{
     
    // Given Number
    int N = 17;
 
    // Function call
    if (isheptadecagonal(N))
    {
        Console.Write("Yes");
    }
    else
    {
        Console.Write("No");
    }
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
// Javascript program for the above approach
 
// Function to check if the number N
// is a heptadecagonal number
function isheptadecagonal(N)
{
    let n
        = (13 + Math.sqrt(120 * N + 169))
          / 30;
 
    // Condition to check if number N
    // is a heptadecagonal number
    return (n - parseInt(n)) == 0;
}
 
// Driver Code
// Given Number
let N = 17;
 
// Function call
if (isheptadecagonal(N)) {
    document.write("Yes");
}
else {
    document.write("No");
}
 
// This code is contributed by subham348.
</script>


Output: 

Yes

 

Time Complexity: O(logN) because inbuilt sqrt function has been used
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
20 Sep, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments