Friday, January 10, 2025
Google search engine
HomeData Modelling & AICount of elements altering which changes the GCD of Array

Count of elements altering which changes the GCD of Array

Given an array arr[] of size N, the task is to count the number of indices in arr[] such that after changing the element of that index to any number, the GCD of the array is changed.

Examples:

Input: arr[] = {3, 6, 9}
Output: 3
Explanation: The GCD of the array is 3.
If we change 3 to 4, the GCD of arr[] becomes 1.
If we change 6 to 7, the GCD of arr[] becomes 1.
If we change 9 to 10, the GCD of arr[] becomes 1.
So, the output is 3.

Input: arr[] = {3, 5, 11}
Output: 0

 

Approach:  To solve the problem follow the below idea:

If the GCD of all the elements after removing the ith element is not 1, then we can change the GCD of the array by changing ith element to any prime. Otherwise, whatever we do, the GCD will always be a 1.

  • Firstly, create a prefix and suffix array of GCD of array arr[]. 
  • Now Run a loop and check for every index, that if after removing the element from index arr[], the GCD is greater than 1 or not. 
    • If the GCD after removing the ith index element is at least 2, it means the ith element is changeable to a prime number or something, so the GCD of arr[] becomes 1. So, increment Count by 1. 
    • But if the GCD after removing the ith index element is 1, it means that the GCD cannot be changed by changing the ith element, the GCD remains the same.
  • Return the total count as the required answer.

Below is the implementation of the above approach:

C++




// C++ code to implement the above approach
 
#include <bits/stdc++.h>
#define ll long long
using namespace std;
 
// Function to find GCD of two numbers
ll GCD(ll a, ll b)
{
    if (!b)
        return a;
    return GCD(b, a % b);
}
 
// Function to find the GCD of array
// without the element at index i
ll find(ll* prefix, ll* suffix, ll i, ll n)
{
    // First Index
    if (i == 0) {
        return suffix[1];
    }
 
    // Last Index
    if (i == n - 1) {
        return prefix[n - 2];
    }
 
    // Middle Index
    else {
        return GCD(prefix[i - 1], suffix[i + 1]);
    }
}
 
// Function to find the count
ll findCount(ll* arr, ll n)
{
    ll i, Count = 0;
 
    ll prefix[n];
    ll suffix[n];
 
    prefix[0] = arr[0];
    suffix[n - 1] = arr[n - 1];
 
    // Create Prefix array of GCD
    for (i = 1; i < n; i++) {
        prefix[i] = GCD(prefix[i - 1], arr[i]);
    }
 
    // Create Suffix array of GCD
    for (i = n - 2; i >= 0; i--) {
        suffix[i] = GCD(suffix[i + 1], arr[i]);
    }
 
    // Find if after removing that index
    // element the GCD is 1 or not
    for (i = 0; i < n; i++) {
 
        // If GCD is not 1 then we can change
        // the element at index i to a
        // prime number and the GCD of
        // array arr[] is changed to 1
        if (find(prefix, suffix, i, n) > 1)
            Count++;
    }
 
    return Count;
}
 
// Driver Code
int main()
{
    ll arr[] = { 3, 6, 9 };
    ll N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    cout << findCount(arr, N);
    return 0;
}


Java




// Java code to implement the above approach
import java.util.*;
 
class GFG{
 
// Function to find GCD of two numbers
static int GCD(int a, int b)
{
    if (b == 0)
        return a;
    return GCD(b, a % b);
}
 
// Function to find the GCD of array
// without the element at index i
static int find(int[] prefix, int[] suffix, int i, int n)
{
    // First Index
    if (i == 0) {
        return suffix[1];
    }
 
    // Last Index
    if (i == n - 1) {
        return prefix[n - 2];
    }
 
    // Middle Index
    else {
        return GCD(prefix[i - 1], suffix[i + 1]);
    }
}
 
// Function to find the count
static int findCount(int []arr, int n)
{
    int i, Count = 0;
 
    int []prefix = new int[n];
    int []suffix = new int[n];
 
    prefix[0] = arr[0];
    suffix[n - 1] = arr[n - 1];
 
    // Create Prefix array of GCD
    for (i = 1; i < n; i++) {
        prefix[i] = GCD(prefix[i - 1], arr[i]);
    }
 
    // Create Suffix array of GCD
    for (i = n - 2; i >= 0; i--) {
        suffix[i] = GCD(suffix[i + 1], arr[i]);
    }
 
    // Find if after removing that index
    // element the GCD is 1 or not
    for (i = 0; i < n; i++) {
 
        // If GCD is not 1 then we can change
        // the element at index i to a
        // prime number and the GCD of
        // array arr[] is changed to 1
        if (find(prefix, suffix, i, n) > 1)
            Count++;
    }
 
    return Count;
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 3, 6, 9 };
    int N = arr.length;
 
    // Function Call
    System.out.print(findCount(arr, N));
}
}
 
// This code is contributed by shikhasingrajput


Python3




# python code to implement the above approach
 
# Function to find GCD of two numbers
 
 
def GCD(a, b):
 
    if (not b):
        return a
    return GCD(b, a % b)
 
 
# Function to find the GCD of array
# without the element at index i
def find(prefix, suffix, i, n):
 
    # First Index
    if (i == 0):
        return suffix[1]
 
    # Last Index
    if (i == n - 1):
        return prefix[n - 2]
 
    # Middle Index
    else:
        return GCD(prefix[i - 1], suffix[i + 1])
 
 
# Function to find the count
def findCount(arr, n):
 
    i, Count = 0, 0
 
    prefix = [0 for _ in range(n)]
    suffix = [0 for _ in range(n)]
 
    prefix[0] = arr[0]
    suffix[n - 1] = arr[n - 1]
 
    # Create Prefix array of GCD
    for i in range(1, n):
        prefix[i] = GCD(prefix[i - 1], arr[i])
 
    # Create Suffix array of GCD
    for i in range(n-2, -1, -1):
        suffix[i] = GCD(suffix[i + 1], arr[i])
 
    # Find if after removing that index
    # element the GCD is 1 or not
    for i in range(0, n):
 
        # If GCD is not 1 then we can change
        # the element at index i to a
        # prime number and the GCD of
        # array arr[] is changed to 1
        if (find(prefix, suffix, i, n) > 1):
            Count += 1
 
    return Count
 
 
# Driver Code
if __name__ == "__main__":
 
    arr = [3, 6, 9]
    N = len(arr)
 
    # Function Call
    print(findCount(arr, N))
 
    # This code is contributed by rakeshsahni


C#




using System;
 
public class GFG{
 
  // Function to find GCD of two numbers
  public static long GCD(long a, long b)
  {
    if (b != 0)
      return a;
    return GCD(b, a % b);
  }
 
  // Function to find the GCD of array
  // without the element at index i
  public static long find(long[] prefix, long[] suffix, long i, long n)
  {
    // First Index
    if (i == 0) {
      return suffix[1];
    }
 
    // Last Index
    if (i == n - 1) {
      return prefix[n - 2];
    }
 
    // Middle Index
    else {
      return GCD(prefix[i - 1], suffix[i + 1]);
    }
  }
 
  // Function to find the count
  public static long findCount(long[] arr, long n)
  {
    long i;
    long Count = 0;
 
    long[] prefix = new long[n];
    long[] suffix = new long[n];
 
    prefix[0] = arr[0];
    suffix[n - 1] = arr[n - 1];
 
    // Create Prefix array of GCD
    for (i = 1; i < n; i++) {
      prefix[i] = GCD(prefix[i - 1], arr[i]);
    }
 
    // Create Suffix array of GCD
    for (i = n - 2; i >= 0; i--) {
      suffix[i] = GCD(suffix[i + 1], arr[i]);
    }
 
    // Find if after removing that index
    // element the GCD is 1 or not
    for (i = 0; i < n; i++) {
 
      // If GCD is not 1 then we can change
      // the element at index i to a
      // prime number and the GCD of
      // array arr[] is changed to 1
      if (find(prefix, suffix, i, n) > 1)
        Count++;
    }
 
    return Count;
  }
 
  static public void Main (){
    long[] arr = { 3, 6, 9 };
    long N = arr.Length;
 
    // Function Call
    Console.WriteLine(findCount(arr, N));
 
  }
}
 
// This code is contributed by akashish__


Javascript




<script>
// JavaScript code to implement the above approach
 
// Function to find GCD of two numbers
function GCD(a,  b)
{
    if (!b)
        return a;
    return GCD(b, a % b);
}
 
// Function to find the GCD of array
// without the element at index i
function find(prefix,suffix,i, n)
{
    // First Index
    if (i == 0) {
        return suffix[1];
    }
 
    // Last Index
    if (i == n - 1) {
        return prefix[n - 2];
    }
 
    // Middle Index
    else {
        return GCD(prefix[i - 1], suffix[i + 1]);
    }
}
 
// Function to find the count
function findCount(arr,  n)
{
    let i, Count = 0;
 
    let prefix = new Array(n);
    let suffix=new Array(n);
 
    prefix[0] = arr[0];
    suffix[n - 1] = arr[n - 1];
 
    // Create Prefix array of GCD
    for (i = 1; i < n; i++) {
        prefix[i] = GCD(prefix[i - 1], arr[i]);
    }
 
    // Create Suffix array of GCD
    for (i = n - 2; i >= 0; i--) {
        suffix[i] = GCD(suffix[i + 1], arr[i]);
    }
 
    // Find if after removing that index
    // element the GCD is 1 or not
    for (i = 0; i < n; i++) {
 
        // If GCD is not 1 then we can change
        // the element at index i to a
        // prime number and the GCD of
        // array arr[] is changed to 1
        if (find(prefix, suffix, i, n) > 1)
            Count++;
    }
 
    return Count;
}
 
// Driver Code
    let arr = [ 3, 6, 9 ];
    let N = arr.length;
 
    // Function Call
    document.write(findCount(arr, N));
     
    // This code is contributed by satwik4409.
    </script>


Output

3

Time Complexity: O(N * log Max) where Max is the maximum element of the array
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
22 Jul, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments