Given a function, Y = (X^6 + X^2 + 9894845) % 971 for a given value. The task is to find the value of the function.
Examples:
Input: x = 5 Output: 469 Input: x = 654654 Output: 450
Explanation:
Y = (X^6 + X^2 + 9894845) % 971.
If we break down the equation we get Y = (X^6)%971 + (X^2)%971 +(9894845)%971
and we can reduce the equation to Y=(X^6)%971 + (X^2)%971 + 355.
Below is the required implementation:
C++
// CPP implementation of above approach #include <bits/stdc++.h> using namespace std; // computing (a^b)%c long long int modpow( long long int base, long long int exp , long long int modulus) { base %= modulus; long long int result = 1; while ( exp > 0) { if ( exp & 1) result = (result * base) % modulus; base = (base * base) % modulus; exp >>= 1; } return result; } // Driver code int main(){ long long int n = 654654, mod = 971; cout<<(((modpow(n, 6, mod)+modpow(n, 2, mod))% mod + 355)% mod); return 0; } // This code is contributed by Sanjit_Prasad |
Java
// Java implementation of above approach class GFG { // computing (a^b)%c static long modpow( long base, long exp, long modulus) { base %= modulus; long result = 1 ; while (exp > 0 ) { if ((exp & 1 )> 0 ) result = (result * base) % modulus; base = (base * base) % modulus; exp >>= 1 ; } return result; } public static void main(String[] args) { long n = 654654 ; long mod = 971 ; System.out.println(((modpow(n, 6 , mod)+modpow(n, 2 , mod))% mod + 355 )% mod); } } // This code is contributed by mits; |
Python3
# Python implementation of above approach n = 654654 mod = 971 print ((( pow (n, 6 , mod) + pow (n, 2 , mod)) % mod + 355 ) % mod) |
C#
// C# implementation of above approach using System; class GFG { // computing (a^b)%c static long modpow( long base1, long exp, long modulus) { base1 %= modulus; long result = 1; while (exp > 0) { if ((exp & 1)>0) result = (result * base1) % modulus; base1 = (base1 * base1) % modulus; exp >>= 1; } return result; } public static void Main() { long n = 654654; long mod = 971; Console.WriteLine(((modpow(n, 6, mod)+modpow(n, 2, mod))% mod + 355)% mod); } } // This code is contributed by mits; |
PHP
<?php // PHP implementation of above approach // computing (a^b)%c function modpow( $base , $exp , $modulus ) { $base %= $modulus ; $result = 1; while ( $exp > 0) { if ( $exp & 1) $result = ( $result * $base ) % $modulus ; $base = ( $base * $base ) % $modulus ; $exp >>= 1; } return $result ; } // Driver code $n = 654654; $mod = 971; echo (((modpow( $n , 6, $mod ) + modpow( $n , 2, $mod )) % $mod + 355) % $mod ); // This code is contributed by mits ?> |
Javascript
<script> // JavaScript implementation of above approach // computing (a^b)%c function modpow(base, exp, modulus) { base %= modulus; let result = 1; while (exp > 0) { if ((exp & 1)>0) result = (result * base) % modulus; base = (base * base) % modulus; exp >>= 1; } return result; } // driver code let n = 654654; let mod = 971; document.write(((modpow(n, 6, mod)+ modpow(n, 2, mod))% mod + 355)% mod); </script> |
450
Time Complexity:O(1), since there is no loop or recursion.
Auxiliary Space: O(1), since no extra space has been taken.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!