Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMaximize Array sum by replacing any K elements by its modulo with...

Maximize Array sum by replacing any K elements by its modulo with any positive integer

Given an array of positive integer arr[], and a number K. the task is to maximize the sum of the array by replacing any K elements of the array by taking modulus with any positive integer which is less than arr[i] i.e, (arr[i] = arr[i]%X where X ≤ arr[i]).

Examples:

Input: arr[] = {5, 7, 18, 12, 11, 3}, K = 4
Output: 41
Explanation: The replacement should be {5%3, 7%4, 18, 12, 11%6, 3%2}

Input: arr[] = {8, 2, 28, 12, 7, 9}, K = 4
Output: 55
Explanation: The replacement should be {8%5, 2%2, 28, 12, 7%4, 9}

 

Approach: For every element arr[i] in the array arr[], module it with (arr[i]/2 +1) which will give the highest possible value of arr[i] after the operation. Following are the steps to solve the problem

  • Sort the array arr[].
  • Iterate over the range [0, K) using the variable i and perform the following tasks:
    • For every element arr[i], module it with (arr[i]/2 +1) and update the result.
  • Find the sum of the updated array and output it.

Below is the implementation of the above approach.

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum possible sum
int find(int arr[], int K, int N)
{
    // Sorting the array
    sort(arr, arr + N);
    int sum = 0;
 
    // Loop to take update K
    for (int i = 0; i < K; i++) {
 
        // Smallest number in array
        arr[i] %= (arr[i] / 2) + 1;
    }
 
    // Loop to find sum
    for (int i = 0; i < N; i++) {
        sum += arr[i];
    }
    return sum;
}
 
// Driver Code
int main()
{
    int arr[] = { 5, 7, 18, 12, 11, 3 };
    int K = 4;
    int N = sizeof(arr) / sizeof(arr[0]);
 
    cout << find(arr, K, N);
    return 0;
}


C




// C program for the above approach
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <limits.h>
 
void sort(int arr[], int n)
{
  int i, j, temp;
  for (i = 0; i < n - 1; i++)
  {
    for (j = 0; j < n - i - 1; j++)
    {
      if (arr[j] > arr[j + 1])
      {
        temp = arr[j];
        arr[j] = arr[j + 1];
        arr[j + 1] = temp;
      }
    }
  }
}
 
// Function to find the maximum possible sum
int find(int arr[], int K, int N)
{
  // Sorting the array
  sort(arr, N);
  int sum = 0;
 
  // Loop to take update K
  for (int i = 0; i < K; i++)
  {
 
    // Smallest number in array
    arr[i] %= (arr[i] / 2) + 1;
  }
 
  // Loop to find sum
  for (int i = 0; i < N; i++)
  {
    sum += arr[i];
  }
  return sum;
}
 
int main()
{
  int arr[] = {5, 7, 18, 12, 11, 3};
  int K = 4;
  int N = sizeof(arr) / sizeof(arr[0]);
 
  printf("%d", find(arr, K, N));
  return 0;
}
 
// This code is contributed by abhinavprkash.


Java




// Java program for the above approach
import java.util.Arrays;
class GFG {
 
  // Function to find the maximum possible sum
  static int find(int arr[], int K, int N) {
    // Sorting the array
    Arrays.sort(arr);
    int sum = 0;
 
    // Loop to take update K
    for (int i = 0; i < K; i++) {
 
      // Smallest number in array
      arr[i] %= (arr[i] / 2) + 1;
    }
 
    // Loop to find sum
    for (int i = 0; i < N; i++) {
      sum += arr[i];
    }
    return sum;
  }
 
  // Driver Code
  public static void main(String args[]) {
    int arr[] = { 5, 7, 18, 12, 11, 3 };
    int K = 4;
    int N = arr.length;
 
    System.out.println(find(arr, K, N));
  }
}
 
// This code is contributed by saurabh_jaiswal.


Python3




# python3 program for the above approach
 
# Function to find the maximum possible sum
def find(arr, K, N):
 
    # Sorting the array
    arr.sort()
    sum = 0
 
    # Loop to take update K
    for i in range(0, K):
 
        # Smallest number in array
        arr[i] %= (arr[i] // 2) + 1
 
    # Loop to find sum
    for i in range(0, N):
        sum += arr[i]
 
    return sum
 
# Driver Code
if __name__ == "__main__":
 
    arr = [5, 7, 18, 12, 11, 3]
    K = 4
    N = len(arr)
 
    print(find(arr, K, N))
 
# This code is contributed by rakeshsahni


C#




// C# program for the above approach
using System;
class GFG {
 
  // Function to find the maximum possible sum
  static int find(int[] arr, int K, int N)
  {
    // Sorting the array
    Array.Sort(arr);
    int sum = 0;
 
    // Loop to take update K
    for (int i = 0; i < K; i++) {
 
      // Smallest number in array
      arr[i] %= (arr[i] / 2) + 1;
    }
 
    // Loop to find sum
    for (int i = 0; i < N; i++) {
      sum += arr[i];
    }
    return sum;
  }
 
  // Driver Code
  public static void Main()
  {
    int[] arr = { 5, 7, 18, 12, 11, 3 };
    int K = 4;
    int N = arr.Length;
 
    Console.Write(find(arr, K, N));
  }
}
 
// This code is contributed by ukasp.


Javascript




  <script>
      // JavaScript code for the above approach
 
 
      // Function to find the maximum possible sum
      function find(arr, K, N) {
          // Sorting the array
          arr.sort(function (a, b) { return a - b })
          let sum = 0;
 
          // Loop to take update K
          for (let i = 0; i < K; i++) {
 
              // Smallest number in array
              arr[i] %= Math.floor(arr[i] / 2) + 1;
          }
 
          // Loop to find sum
          for (let i = 0; i < N; i++) {
              sum += arr[i];
          }
          return sum;
      }
 
      // Driver Code
 
      let arr = [5, 7, 18, 12, 11, 3];
      let K = 4;
      let N = arr.length;
 
      document.write(find(arr, K, N));
 
// This code is contributed by Potta Lokesh
  </script>


 
 

Output

41

 

Time Complexity: O(N * logN) where N is the size of the array
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
03 Jun, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments