Given a number N, the task is to find Nth Tetracontaoctagon number.
A Tetracontaoctagon number is a class of figurate numbers. It has a 48-sided polygon called Tetracontaoctagon. The N-th Tetracontaoctagonal number count’s the 48 number of dots and all other dots are surrounding with a common sharing corner and make a pattern. The first few Tetracontaoctagonol numbers are 1, 48, 141, 280, 465, 696, …
Examples:
Input: N = 2
Output: 48
Explanation:
The second Tetracontaoctagonol number is 48.
Input: N = 3
Output: 141
Approach: The N-th Tetracontaoctagonal number is given by the formula:
- Nth term of s sided polygon =
- Therefore Nth term of 48 sided polygon is
Below is the implementation of the above approach:
C++
// C++ implementation for // above approach #include <bits/stdc++.h> using namespace std; // Function to find the // nth Tetracontaoctagonal Number int TetracontaoctagonalNum( int n) { return (46 * n * n - 44 * n) / 2; } // Driver Code int main() { int n = 3; cout << TetracontaoctagonalNum(n); return 0; } |
Java
// Java program for above approach class GFG{ // Function to find the // nth TetracontaoctagonalNum Number static int TetracontaoctagonalNum( int n) { return ( 46 * n * n - 44 * n) / 2 ; } // Driver code public static void main(String[] args) { int n = 3 ; System.out.print(TetracontaoctagonalNum(n)); } } // This code is contributed by shubham |
Python3
# Python3 Cimplementation for # above approach # Function to find the # nth Tetracontaoctagonal Number def TetracontaoctagonalNum(n): return ( 46 * n * n - 44 * n) / 2 ; # Driver Code n = 3 ; print (TetracontaoctagonalNum(n)); # This code is contributed by Code_Mech |
C#
// C# program for above approach using System; class GFG{ // Function to find the // nth TetracontaoctagonalNum Number static int TetracontaoctagonalNum( int n) { return (46 * n * n - 44 * n) / 2; } // Driver code public static void Main() { int n = 3; Console.Write(TetracontaoctagonalNum(n)); } } // This code is contributed by Code_Mech |
Javascript
<script> // Javascript implementation for // above approach // Function to find the // nth Tetracontaoctagonal Number function TetracontaoctagonalNum(n) { return (46 * n * n - 44 * n) / 2; } // Driver Code var n = 3; document.write(TetracontaoctagonalNum(n)); </script> |
141
Reference: https://en.wikipedia.org/wiki/Tetracontaoctagon
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!