Wednesday, November 27, 2024
Google search engine
HomeData Modelling & AIFind GCD of largest and smallest Armstrong numbers in a given range

Find GCD of largest and smallest Armstrong numbers in a given range

Given a range of positive integers, find the Greatest Common Divisor (GCD) of the largest and smallest Armstrong numbers within that range.

Examples:

Input: Range [100, 10000]
Output: 3
Explanation: Smallest Armstrong number in the given range is 153, and the largest Armstrong number in the given range is 9474. The GCD of 153 and 9474 is 3.

Input: Range [200, 20000]
Output: 2
Explanation: Smallest Armstrong number in the given range is 370, and the largest Armstrong number in the given range is 9474. The GCD of 370 and 9474 is 2.

Approach: This can be solved with the following idea:

  • Iterate through the given range of positive integers.
  • For each number, check if it is an Armstrong number.
  • If it is, update the smallest and largest Armstrong numbers found so far.
  • Once the iteration is complete, find the GCD of the smallest and largest Armstrong numbers using a standard GCD algorithm.

Below are the steps to implement the above idea:

  • Initialize variables to keep track of the smallest and largest Armstrong numbers found so far and set them to the minimum and maximum possible integer values respectively.
  • Iterate through the given range of positive integers.
  • For each number, calculate the sum of its digits raised to the power of the number of digits and check if it is equal to the original number. If it is, update the smallest and largest Armstrong numbers found so far.
  • Once the iteration is complete, find the GCD of the smallest and largest Armstrong numbers using a standard GCD algorithm.
  • Print the GCD as the final output.

Below is the code for the above approach:

C++




// C++ code for the above approach:
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a number is an
// Armstrong number
bool isArmstrong(int num)
{
    int originalNum = num;
    int sum = 0;
    int numDigits = to_string(num).length();
    while (num > 0) {
        int digit = num % 10;
        sum += pow(digit, numDigits);
        num /= 10;
    }
    return sum == originalNum;
}
 
// Function to find the GCD of two numbers
int gcd(int a, int b)
{
    if (b == 0) {
        return a;
    }
    return gcd(b, a % b);
}
 
// Find GCD
void gcdProduct(int rangeStart, int rangeEnd)
{
 
    int smallestArmstrong = INT_MAX;
    int largestArmstrong = INT_MIN;
 
    // Iterate through the given range
    for (int i = rangeStart; i <= rangeEnd; i++) {
        if (isArmstrong(i)) {
            smallestArmstrong = min(smallestArmstrong, i);
            largestArmstrong = max(largestArmstrong, i);
        }
    }
 
    if (smallestArmstrong == INT_MAX
        || largestArmstrong == INT_MIN) {
        cout << endl;
    }
    else {
        int gcdResult
            = gcd(smallestArmstrong, largestArmstrong);
        cout << gcdResult << endl;
    }
}
 
// Driver code
int main()
{
    int rangeStart = 100;
    int rangeEnd = 10000;
 
    // Function call
    gcdProduct(rangeStart, rangeEnd);
 
    return 0;
}


Java




// JAVA code for the above approach:
 
import java.util.*;
 
public class GCDOfArmstrongNumbers {
 
    // Function to check if a number is an Armstrong number
    public static boolean isArmstrong(int num)
    {
        int originalNum = num;
        int sum = 0;
        int numDigits = String.valueOf(num).length();
 
        while (num > 0) {
            int digit = num % 10;
            sum += Math.pow(digit, numDigits);
            num /= 10;
        }
 
        return sum == originalNum;
    }
 
    // Function to find the GCD of two numbers
    public static int gcd(int a, int b)
    {
        if (b == 0) {
            return a;
        }
        return gcd(b, a % b);
    }
 
    // Find GCD
    public static void gcdProduct(int rangeStart,
                                  int rangeEnd)
    {
        int smallestArmstrong = Integer.MAX_VALUE;
        int largestArmstrong = Integer.MIN_VALUE;
 
        // Iterate through the given range
        for (int i = rangeStart; i <= rangeEnd; i++) {
            if (isArmstrong(i)) {
                smallestArmstrong
                    = Math.min(smallestArmstrong, i);
                largestArmstrong
                    = Math.max(largestArmstrong, i);
            }
        }
 
        if (smallestArmstrong == Integer.MAX_VALUE
            || largestArmstrong == Integer.MIN_VALUE) {
            System.out.println();
        }
        else {
            int gcdResult
                = gcd(smallestArmstrong, largestArmstrong);
            System.out.println(gcdResult);
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int rangeStart = 100;
        int rangeEnd = 10000;
 
        // Function call
        gcdProduct(rangeStart, rangeEnd);
    }
}
// This code is contributed by shivamgupta098765421


Python3




# Python3 code for the above approach:
import math
 
# Function to check if a number is an Armstrong number
 
 
def isArmstrong(num):
    originalNum = num
    sum = 0
    numDigits = len(str(num))
    while num > 0:
        digit = num % 10
        sum += math.pow(digit, numDigits)
        num //= 10
    return sum == originalNum
 
# Function to find the GCD of two numbers
 
 
def gcd(a, b):
    if b == 0:
        return a
    return gcd(b, a % b)
 
# Find GCD
 
 
def gcdProduct(rangeStart, rangeEnd):
    smallestArmstrong = float('inf')
    largestArmstrong = float('-inf')
 
    # Iterate through the given range
    for i in range(rangeStart, rangeEnd + 1):
        if isArmstrong(i):
            smallestArmstrong = min(smallestArmstrong, i)
            largestArmstrong = max(largestArmstrong, i)
 
    if smallestArmstrong == float('inf') or largestArmstrong == float('-inf'):
        print()
    else:
        gcdResult = gcd(smallestArmstrong, largestArmstrong)
        print(gcdResult)
 
 
# Driver code
if __name__ == '__main__':
    rangeStart = 100
    rangeEnd = 10000
 
    # Function call
    gcdProduct(rangeStart, rangeEnd)
 
# This code is contribued by rambabuguphka


C#




using System;
 
class GFG {
    // Function to check if a number is an Armstrong number
    static bool IsArmstrong(int num)
    {
        int originalNum = num;
        int sum = 0;
        int numDigits = num.ToString().Length;
        while (num > 0) {
            int digit = num % 10;
            sum += (int)Math.Pow(digit, numDigits);
            num /= 10;
        }
        return sum == originalNum;
    }
 
    // Function to find the GCD of two numbers
    static int Gcd(int a, int b)
    {
        if (b == 0) {
            return a;
        }
        return Gcd(b, a % b);
    }
 
    // Find GCD
    static void GcdProduct(int rangeStart, int rangeEnd)
    {
        int smallestArmstrong = int.MaxValue;
        int largestArmstrong = int.MinValue;
 
        // Iterate through the given range
        for (int i = rangeStart; i <= rangeEnd; i++) {
            if (IsArmstrong(i)) {
                smallestArmstrong
                    = Math.Min(smallestArmstrong, i);
                largestArmstrong
                    = Math.Max(largestArmstrong, i);
            }
        }
 
        if (smallestArmstrong == int.MaxValue
            || largestArmstrong == int.MinValue) {
            Console.WriteLine();
        }
        else {
            int gcdResult
                = Gcd(smallestArmstrong, largestArmstrong);
            Console.WriteLine(gcdResult);
        }
    }
 
    // Driver code
    static void Main()
    {
        int rangeStart = 100;
        int rangeEnd = 10000;
 
        // Function call
        GcdProduct(rangeStart, rangeEnd);
    }
}


Javascript




// Function to check if a number is an Armstrong number
function isArmstrong(num) {
  const originalNum = num;
  let sum = 0;
  const numDigits = String(num).length;
  while (num > 0) {
    const digit = num % 10;
    sum += Math.pow(digit, numDigits);
    num = Math.floor(num / 10);
  }
  return sum === originalNum;
}
 
// Function to find the GCD of two numbers
function gcd(a, b) {
  if (b === 0) {
    return a;
  }
  return gcd(b, a % b);
}
 
// Find GCD
function gcdProduct(rangeStart, rangeEnd) {
  let smallestArmstrong = Number.MAX_SAFE_INTEGER;
  let largestArmstrong = Number.MIN_SAFE_INTEGER;
 
  // Iterate through the given range
  for (let i = rangeStart; i <= rangeEnd; i++) {
    if (isArmstrong(i)) {
      smallestArmstrong = Math.min(smallestArmstrong, i);
      largestArmstrong = Math.max(largestArmstrong, i);
    }
  }
 
  if (smallestArmstrong === Number.MAX_SAFE_INTEGER || largestArmstrong === Number.MIN_SAFE_INTEGER) {
    console.log();
  } else {
    const gcdResult = gcd(smallestArmstrong, largestArmstrong);
    console.log(gcdResult);
  }
}
 
// Driver code
const rangeStart = 100;
const rangeEnd = 10000;
 
// Function call
gcdProduct(rangeStart, rangeEnd);
 
 
// This code is contributed by shivamgupta310570


Output

3








Time Complexity: O(n)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
22 Aug, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments