Saturday, November 23, 2024
Google search engine
HomeData Modelling & AIMinimum operations for same MEX

Minimum operations for same MEX

Given an array ‘arr’ consisting of N arrays, each of size M, the task is to find the minimum number of operations required to make the Minimum Excluded Element (MEX) the same for all N arrays. You can perform the following task zero or more times:

  • Choose one of the N arrays.
  • Choose some non-negative integer ‘x’ and append it to the chosen array.

Examples:

Input: arr = { {2, 2, 3}, {4, 1, 3}, {3, 1, 2} }
Output: 4
Explanation: 1, 2, 3, 4 can not be the MEX as none of all four is a number that is not present in all the 3 arrays, but 5 is not present in all three so to make 5 as MEX of all three we have to add 1, 4 in the first array and 2 in second and 4 in third after this arrays will look like {2, 2, 3, 1, 4}, {4, 1, 3, 2},
{3, 1, 2, 4}, and their MEX will be 5.

Input: arr = { {1, 2, 2}, {1, 1, 1}, {2, 1, 2} }
Output: 1
Explanation: 3 is the smallest positive number that is not present in all three arrays. So to make 3 as MEX we have to add 2 in the second array and that will take a total of 1 operation.

Approach: To solve the problem follow the below observations:

Observations:

  • As we have to find the smallest missing number from all arrays, So we will start with the smallest positive number 1.
  • If one is present in at least one of the arrays then this number can not be a number that is missing from all arrays so we have to do operations to add 1 in arrays in which it is not present.
  • For step-2 total operation will be the total number of arrays in which 1 is not present.
  • Then we will go to the next element which is 2 and do the same operation until we get an element that is not present in the array.
  • While doing step-2 to step-4, we will keep updating our number of operations as said in step-3.
  • In last, we will return the total number of operations.

Follow the steps to solve the problem:

  • First, we will take an ans variable to store the number of operations
  • After this, we will take a HashMap for each N array and store the elements present in each array so that we can get the information on whether an element is present in this array or not in O(1) time.
  • After this, we will take the number variable which will represent the minimum positive number that is not present in all arrays.
  • After this, we have to traverse all arrays until we get an element that is not present in all arrays.
  • While traversing we will keep track of the total variable that number is not present in how many arrays.
    • If that number is not present in all arrays then the total will be equal to N else it will not.
    • If not present in all arrays then we have to return our ans variable
    • Else we have to add the number of operations to add this number in which arrays this number is not present.

Below is the implementation for the above approach:

C++




// C++ code for the above approach:
#include <bits/stdc++.h>
using namespace std;
 
int MexEquality(int N, int M, vector<vector<int> >& Arr)
{
 
    // Variable to store minimum number
    // of operations
    int ans = 0;
 
    // To store which element is present or not
    unordered_map<int, int> mm[N];
 
    // Storing which element is present
    for (int i = 0; i < N; i++) {
        for (auto x : Arr[i]) {
            mm[i][x] = 1;
        }
    }
 
    // To start with minimum positive number as
    // explained in explanation
    int number = 1;
 
    // Until we got our answer
    while (true) {
 
        // i for iteration and
        // total, for arrays which do not
      // contain number
        int i, total = 0;
 
        for (i = 0; i < N; i++) {
            if (mm[i][number] == 0) {
                total++;
            }
        }
 
        // If all arrays do not contain number
        if (total == N)
            return ans;
 
        // Else add that element in all those
        // array and increase operations
        ans += total;
 
        number++;
    }
    return ans;
}
 
// Drivers code
int main()
{
 
    int N, M;
 
    vector<vector<int> > Arr{ { 1, 2, 2 },
                              { 1, 1, 1 },
                              { 2, 1, 2 } };
 
    N = Arr.size();
    M = Arr[0].size();
 
    // Functional call
    cout << MexEquality(N, M, Arr);
 
    return 0;
}


Java




/*package whatever //do not write package name here */
 
import java.io.*;
 
import java.util.*;
 
public class GFG {
 
    static int MexEquality(int N, int M, List<List<Integer>> Arr) {
 
        // Variable to store the minimum number of operations
        int ans = 0;
 
        // To store which element is present or not
        HashMap<Integer, Integer>[] mm = new HashMap[N];
 
        for (int i = 0; i < N; i++) {
            mm[i] = new HashMap<>();
            for (int x : Arr.get(i)) {
                mm[i].put(x, 1);
            }
        }
 
        // To start with the minimum positive number as explained in the explanation
        int number = 1;
 
        // Until we get our answer
        while (true) {
 
            // 'i' for iteration and 'total' for arrays which do not contain the number
            int i, total = 0;
 
            for (i = 0; i < N; i++) {
                if (!mm[i].containsKey(number)) {
                    total++;
                }
            }
 
            // If all arrays do not contain the number
            if (total == N)
                return ans;
 
            // Else add that element in all those arrays and increase operations
            ans += total;
 
            number++;
        }
    }
 
    public static void main(String[] args) {
 
        int N, M;
 
        List<List<Integer>> Arr = new ArrayList<>();
        Arr.add(Arrays.asList(1, 2, 2));
        Arr.add(Arrays.asList(1, 1, 1));
        Arr.add(Arrays.asList(2, 1, 2));
 
        N = Arr.size();
        M = Arr.get(0).size();
 
        // Functional call
        System.out.println(MexEquality(N, M, Arr));
    }
}


Python3




# Function to calculate the minimum number of operations
def MexEquality(N, M, Arr):
    ans = 0
    mm = [{} for _ in range(N)]  # Create a list of dictionaries for each row
 
    # Fill in the dictionaries with elements from the matrix
    for i in range(N):
        for x in Arr[i]:
            mm[i][x] = 1
 
    number = 1  # Start with the minimum positive number
 
    while True:
        i, total = 0, 0
 
        # Count the number of arrays that do not contain the current number
        for i in range(N):
            if mm[i].get(number, 0) == 0:
                total += 1
 
        # If all arrays do not contain the current number, return the answer
        if total == N:
            return ans
 
        ans += total  # Add the count of arrays that don't contain the number to the answer
        number += 1    # Move to the next number
 
    return ans
 
# Driver code
if __name__ == "__main__":
    Arr = [[1, 2, 2],
           [1, 1, 1],
           [2, 1, 2]]
 
    N = len(Arr)  # Number of rows
    M = len(Arr[0])  # Number of columns
 
    # Function call and output the result
    print(MexEquality(N, M, Arr))
#This code is contributed by chinmaya121221


C#




using System;
using System.Collections.Generic;
 
class Program
{
    static int MexEquality(int N, int M, List<List<int>> Arr)
    {
       
          // Variable to store minimum number
        // of operations
        int ans = 0;
         
          // To store which element is present or not
        Dictionary<int, int>[] mm = new Dictionary<int, int>[N];
         
       
          // Storing which element is present
        for (int i = 0; i < N; i++)
        {
            mm[i] = new Dictionary<int, int>();
            foreach (int x in Arr[i])
            {
                mm[i][x] = 1;
            }
        }
         
          // To start with minimum positive number as
            // explained in explanation
        int number = 1;
         
           // Until we got our answer
        while (true)
        {
           // i for iteration and
             // total, for arrays which do not
           // contain number
            int total = 0;
            for (int i = 0; i < N; i++)
            {
                if (!mm[i].ContainsKey(number))
                {
                    total++;
                }
            }
             
              // If all arrays do not contain number
            if (total == N)
            {
                return ans;
            }
             
              // Else add that element in all those
             // array and increase operations
            ans += total;
            number++;
        }
         
        //return ans;
    }
 
      // Drivers code
    static void Main(string[] args)
    {
        int N, M;
        List<List<int>> Arr = new List<List<int>>()
        {
            new List<int>() { 1, 2, 2 },
            new List<int>() { 1, 1, 1 },
            new List<int>() { 2, 1, 2 }
        };
        N = Arr.Count;
        M = Arr[0].Count;
         
        Console.WriteLine(MexEquality(N, M, Arr));
    }
}


Javascript




function MexEquality(N, M, Arr) {
    // Variable to store the minimum number of operations
    let ans = 0;
    let mm = new Array(N);
    for (let i = 0; i < N; i++) {
        // To store which element is present or not
        mm[i] = new Map();
        for (let x of Arr[i]) {
            mm[i].set(x, 1);
        }
    }
    // To start with the minimum positive number as explained in the explanation
    let number = 1;
    // Until we get our answer
    while (true) {
        // 'i' for iteration and 'total' for arrays which do not contain the number
        let total = 0;
        for (let i = 0; i < N; i++) {
            if (!mm[i].has(number)) {
                total++;
            }
        }
         
        // If all arrays do not contain the number
        if (total === N) {
            return ans;
        }
         
        // Else add that element in all those arrays and increase operations
        ans += total;
        number++;
    }
}
 
let N, M;
let Arr = [];
Arr.push([1, 2, 2]);
Arr.push([1, 1, 1]);
Arr.push([2, 1, 2]);
N = Arr.length;
M = Arr[0].length;
 
// Functional call
console.log(MexEquality(N, M, Arr));


Output

1







Time Complexity: O(N*M)
Auxiliary Space: O(N*M)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
31 Oct, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments