Saturday, November 23, 2024
Google search engine
HomeData Modelling & AIDistribute N in a sequence having K-sized groups of 1, 2, 4...

Distribute N in a sequence having K-sized groups of 1, 2, 4 and so on

Given a number N, and an integer K. The task is to distribute N in a sequence such that the first K numbers of the sequence is 20, the next K numbers are 21, and so on such that the sum of the sequence is at most N. Find the largest size of the sequence.

Examples:

Input: N = 35, K = 5
Output: 15
Explanation: The sequence is 1 1 1 1 1 2 2 2 2 2 4 4 4 4 4.
The summation of the sequence is 35.  

Input: N = 16, K = 3
Output: 8
Explanation: The sequence is 1 1 1 2 2 2 4.
The summation of the sequence is 13, which is less that 16 

 

Approach: Follow the below steps to solve the problem: 

  • Let variable ans store the output of the program.
  • Take a loop from 1 to i, which calculates the size of the sequence up to which K*pow(2, i) < N. By adding K to ans and subtracting K*pow(2, i) from N in each loop.
  • The size of the remaining sequence is calculated by adding N/pow(2, i) to ans.

Below is the implementation of the above approach:

C++




// C++ code to implement the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the size of sequence
int get(int N, int K)
{
    int ans = 0;
    int i = 0;
 
    // Loop to calculate size of sequence
    // upto which K*pow(2, i) < N.
    while (K * pow(2, i) < N) {
        N -= (K * pow(2, i));
        i++;
        ans += K;
    }
 
    // Calculate Size of remaining sequence
    ans += N / (pow(2, i));
    return ans;
}
 
// Driver code
int main()
{
    int N, K;
    N = 35;
    K = 5;
    cout << get(N, K);
    return 0;
}


Java




// Java code to implement the above approach
class GFG {
 
  // Function to find the size of sequence
  static int get(int N, int K)
  {
    int ans = 0;
    int i = 0;
 
    // Loop to calculate size of sequence
    // upto which K*pow(2, i) < N.
    while (K * (int)Math.pow(2, i) < N) {
      N -= (K * (int)Math.pow(2, i));
      i++;
      ans += K;
    }
 
    // Calculate Size of remaining sequence
    ans += N / (int)(Math.pow(2, i));
    return ans;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int N, K;
    N = 35;
    K = 5;
    System.out.print(get(N, K));
  }
}
 
// This code is contributed by ukasp.


Python3




# Python code to implement the above approach
 
# Function to find the size of sequence
def get (N, K):
    ans = 0;
    i = 0;
 
    # Loop to calculate size of sequence
    # upto which K*pow(2, i) < N.
    while (K * (2 ** i) < N):
        N -= (K * (2 ** i));
        i += 1
        ans += K;
 
    # Calculate Size of remaining sequence
    ans += (N // (2 ** i));
    return ans;
 
# Driver code
N = 35;
K = 5;
print(get(N, K));
 
# This code is contributed by Saurabh Jaiswal


C#




// C# code to implement the above approach
using System;
class GFG
{
 
  // Function to find the size of sequence
  static int get(int N, int K)
  {
    int ans = 0;
    int i = 0;
 
    // Loop to calculate size of sequence
    // upto which K*pow(2, i) < N.
    while (K * (int)Math.Pow(2, i) < N) {
      N -= (K * (int)Math.Pow(2, i));
      i++;
      ans += K;
    }
 
    // Calculate Size of remaining sequence
    ans += N / (int)(Math.Pow(2, i));
    return ans;
  }
 
  // Driver code
  public static void Main()
  {
    int N, K;
    N = 35;
    K = 5;
    Console.Write(get(N, K));
  }
}
 
// This code is contributed b Samim Hossain Mondal.


Javascript




<script>
    // JavaScript code to implement the above approach
 
    // Function to find the size of sequence
    const get = (N, K) => {
        let ans = 0;
        let i = 0;
 
        // Loop to calculate size of sequence
        // upto which K*pow(2, i) < N.
        while (K * Math.pow(2, i) < N) {
            N -= (K * Math.pow(2, i));
            i++;
            ans += K;
        }
 
        // Calculate Size of remaining sequence
        ans += parseInt(N / (Math.pow(2, i)));
        return ans;
    }
 
    // Driver code
 
    let N, K;
    N = 35;
    K = 5;
    document.write(get(N, K));
 
// This code is contributed by rakeshsahni
 
</script>


 
 

Output

15

Time Complexity: O(log(N)) where the base of log is K
Auxiliary Space: O(1) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
17 Jan, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments