Tuesday, November 26, 2024
Google search engine
HomeData Modelling & AIFind product of the smallest and largest prime numbers in a binary...

Find product of the smallest and largest prime numbers in a binary tree

Given a binary tree, the task is to find the product of the smallest and largest prime numbers in a given binary tree.

Examples:

Input:

             4
            / \
          5    7
        / \    / \
      1   3 5   8

Output: 21

Input: 

            6
           /  \
         8    11
        / \    / \
     4    3 9   15

Output: 33

Approach: This can be solved with the following idea:

The main idea behind this approach is to perform an in-order traversal of the binary tree and store all the prime numbers in a vector. Once we have all the prime numbers in the vector, we can easily find the minimum and maximum prime numbers in the vector and return their product. We perform an in-order traversal of the binary tree to visit each node of the tree. At each node, we check if the node’s value is prime or not. If the value is prime, we add it to a vector.

Steps involved in the implementation of code:

  • In the isPrime() function Check if the value of n is less than or equal to 1. If true, return false as 1.
  • Loop from 2 to sqrt(n) and check if the number is divisible by any of these numbers.
    • If n is divisible by i (i.e., n%i == 0), return false as n is not prime.
    • If the loop finishes without finding a factor, return true as n is prime.
  • In the inorder() function Check if the root is null. If true, return from the function.
  • Recursively call in order with the left child of the root and the same vector as inputs.
  • Check if the value of the root is prime. If true, add the value to the vector.
  • Recursively call in order with the right child of the root and the same vector as inputs.
  • Once we have all the prime numbers in the vector, we can find the minimum and maximum prime numbers in the vector using a loop. 
  • We initialize the minimum and maximum prime numbers to the maximum and minimum integer values, respectively, and then iterate through the vector of prime numbers. 
    • At each iteration, we check if the current prime number is smaller than the current minimum prime number, and update the minimum prime number if it is. 
    • Similarly, we check if the current prime number is larger than the current maximum prime number, and update the maximum prime number if it is.
  • Finally, we return the product of the smallest and largest prime numbers found in the vector.

Below is the implementation of the above approach:

C++




// C++ code of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Structure of tree
struct Node {
    int val;
    Node *left, *right;
};
 
// Function to create a new node
Node* createNode(int val)
{
    Node* newNode = new Node;
    newNode->val = val;
    newNode->left = NULL;
    newNode->right = NULL;
    return newNode;
}
 
// Function to check if a number
// is prime or not
bool isPrime(int n)
{
    if (n <= 1)
        return false;
    for (int i = 2; i * i <= n; i++) {
        if (n % i == 0)
            return false;
    }
    return true;
}
 
// Function to perform inorder traversal
// of the binary tree and store all the
// prime numbers in a vector
void inorder(Node* root, vector<int>& primes)
{
 
    if (root == NULL)
        return;
 
    inorder(root->left, primes);
    if (isPrime(root->val))
        primes.push_back(root->val);
    inorder(root->right, primes);
}
 
// Function to get maximum product
void maxProduct(Node* root)
{
    vector<int> primes;
 
    // Traverse
    inorder(root, primes);
 
    int n = primes.size();
 
    // If no prime number is there
    if (n == 0)
        cout << endl;
    else {
        int minPrime = INT_MAX;
        int maxPrime = INT_MIN;
 
        for (int i = 0; i < n; i++) {
            if (primes[i] < minPrime)
                minPrime = primes[i];
            if (primes[i] > maxPrime)
                maxPrime = primes[i];
        }
 
        // Get the product
        cout << minPrime * maxPrime << endl;
    }
}
 
// Driver code
int main()
{
    Node* root = createNode(4);
    root->left = createNode(5);
    root->right = createNode(7);
    root->left->left = createNode(1);
    root->left->right = createNode(3);
    root->right->left = createNode(5);
    root->right->right = createNode(8);
 
    // Function call
    maxProduct(root);
    return 0;
}


Java




/*package whatever //do not write package name here */
 
import java.util.ArrayList;
import java.util.List;
 
// Structure of tree
class Node {
    int val;
    Node left, right;
}
 
public class Main {
    // Function to create a new node
    static Node createNode(int val) {
        Node newNode = new Node();
        newNode.val = val;
        newNode.left = null;
        newNode.right = null;
        return newNode;
    }
 
    // Function to check if a number is prime or not
    static boolean isPrime(int n) {
        if (n <= 1)
            return false;
        for (int i = 2; i * i <= n; i++) {
            if (n % i == 0)
                return false;
        }
        return true;
    }
 
    // Function to perform inorder traversal of the binary tree and store all the prime numbers in a list
    static void inorder(Node root, List<Integer> primes) {
        if (root == null)
            return;
 
        inorder(root.left, primes);
        if (isPrime(root.val))
            primes.add(root.val);
        inorder(root.right, primes);
    }
 
    // Function to get maximum product
    static void maxProduct(Node root) {
        List<Integer> primes = new ArrayList<>();
 
        // Traverse
        inorder(root, primes);
 
        int n = primes.size();
 
        // If no prime number is there
        if (n == 0)
            System.out.println();
        else {
            int minPrime = Integer.MAX_VALUE;
            int maxPrime = Integer.MIN_VALUE;
 
            for (int i = 0; i < n; i++) {
                if (primes.get(i) < minPrime)
                    minPrime = primes.get(i);
                if (primes.get(i) > maxPrime)
                    maxPrime = primes.get(i);
            }
 
            // Get the product
            System.out.println(minPrime * maxPrime);
        }
    }
 
    // Driver code
    public static void main(String[] args) {
        Node root = createNode(4);
        root.left = createNode(5);
        root.right = createNode(7);
        root.left.left = createNode(1);
        root.left.right = createNode(3);
        root.right.left = createNode(5);
        root.right.right = createNode(8);
 
        // Function call
        maxProduct(root);
    }
}
//This code is contributed by Sameer Hake


Python3




# Structure of tree
class Node:
    def __init__(self, val):
        self.val = val
        self.left = None
        self.right = None
 
# Function to create a new node
def createNode(val):
    newNode = Node(val)
    return newNode
 
# Function to check if a number is prime or not
def isPrime(n):
    if n <= 1:
        return False
    for i in range(2, int(n**0.5) + 1):
        if n % i == 0:
            return False
    return True
 
# Function to perform inorder traversal
# of the binary tree and store all the
# prime numbers in a list
def inorder(root, primes):
    if root is None:
        return
 
    inorder(root.left, primes)
    if isPrime(root.val):
        primes.append(root.val)
    inorder(root.right, primes)
 
# Function to get maximum product
def maxProduct(root):
    primes = []
 
    # Traverse
    inorder(root, primes)
 
    n = len(primes)
 
    # If no prime number is there
    if n == 0:
        print()
    else:
        minPrime = float('inf')
        maxPrime = float('-inf')
 
        for i in range(n):
            if primes[i] < minPrime:
                minPrime = primes[i]
            if primes[i] > maxPrime:
                maxPrime = primes[i]
 
        # Get the product
        print(minPrime * maxPrime)
 
# Driver code
if __name__ == '__main__':
    root = createNode(4)
    root.left = createNode(5)
    root.right = createNode(7)
    root.left.left = createNode(1)
    root.left.right = createNode(3)
    root.right.left = createNode(5)
    root.right.right = createNode(8)
 
    # Function call
    maxProduct(root)


C#




using System;
using System.Collections.Generic;
 
// Structure of tree
class Node {
    public int val;
    public Node left, right;
}
 
class Program {
    // Function to create a new node
    static Node CreateNode(int val) {
        Node newNode = new Node();
        newNode.val = val;
        newNode.left = null;
        newNode.right = null;
        return newNode;
    }
 
    // Function to check if a number is prime or not
    static bool IsPrime(int n) {
        if (n <= 1)
            return false;
        for (int i = 2; i * i <= n; i++) {
            if (n % i == 0)
                return false;
        }
        return true;
    }
 
    // Function to perform inorder traversal of the binary tree and store all the prime numbers in a list
    static void Inorder(Node root, List<int> primes) {
        if (root == null)
            return;
 
        Inorder(root.left, primes);
        if (IsPrime(root.val))
            primes.Add(root.val);
        Inorder(root.right, primes);
    }
 
    // Function to get maximum product
    static void MaxProduct(Node root) {
        List<int> primes = new List<int>();
 
        // Traverse
        Inorder(root, primes);
 
        int n = primes.Count;
 
        // If no prime number is there
        if (n == 0)
            Console.WriteLine();
        else {
            int minPrime = int.MaxValue;
            int maxPrime = int.MinValue;
 
            for (int i = 0; i < n; i++) {
                if (primes[i] < minPrime)
                    minPrime = primes[i];
                if (primes[i] > maxPrime)
                    maxPrime = primes[i];
            }
 
            // Get the product
            Console.WriteLine(minPrime * maxPrime);
        }
    }
 
    // Driver code
    static void Main(string[] args) {
        Node root = CreateNode(4);
        root.left = CreateNode(5);
        root.right = CreateNode(7);
        root.left.left = CreateNode(1);
        root.left.right = CreateNode(3);
        root.right.left = CreateNode(5);
        root.right.right = CreateNode(8);
 
        // Function call
        MaxProduct(root);
    }
}
//This code is contributed by Sameer Hake


Javascript




// Structure of tree
class Node {
    constructor(val) {
        this.val = val;
        this.left = null;
        this.right = null;
    }
}
 
// Function to check if a number is prime or not
function isPrime(n) {
    if (n <= 1)
        return false;
    for (let i = 2; i * i <= n; i++) {
        if (n % i === 0)
            return false;
    }
    return true;
}
 
// Function to perform inorder traversal of the binary tree and store all the prime numbers in an array
function inorder(root, primes) {
    if (root === null)
        return;
 
    inorder(root.left, primes);
    if (isPrime(root.val))
        primes.push(root.val);
    inorder(root.right, primes);
}
 
// Function to get maximum product
function maxProduct(root) {
    let primes = [];
 
    // Traverse
    inorder(root, primes);
 
    let n = primes.length;
 
    // If no prime number is there
    if (n === 0)
        console.log();
    else {
        let minPrime = Number.MAX_SAFE_INTEGER;
        let maxPrime = Number.MIN_SAFE_INTEGER;
 
        for (let i = 0; i < n; i++) {
            if (primes[i] < minPrime)
                minPrime = primes[i];
            if (primes[i] > maxPrime)
                maxPrime = primes[i];
        }
 
        // Get the product
        console.log(minPrime * maxPrime);
    }
}
 
// Driver code
let root = new Node(4);
root.left = new Node(5);
root.right = new Node(7);
root.left.left = new Node(1);
root.left.right = new Node(3);
root.right.left = new Node(5);
root.right.right = new Node(8);
 
// Function call
maxProduct(root);
//This code is contributed by Sameer Hake


Output

21

Time Complexity: O(N sqrt(N))
Auxiliary Space: O(H)

Approach : Recursive Approach With Helper Functions

Using two helper functions: one to find the smallest prime number in the tree and another to find the largest prime
number. Both helper functions traverse the tree recursively and return the appropriate value. Last, we return
the product of the smallest and largest prime numbers found.

Below is the code implementation:

C++




#include <iostream>
#include <climits>
#include <cmath>
using namespace std;
 
struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
 
// Function to check if a number is prime
bool isPrime(int n) {
   // 1 is not a prime number
    if (n <= 1) {
        return false;
    }
    for (int i = 2; i <= sqrt(n); i++) {
        if (n % i == 0) {
            return false;
        }
    }
    return true;
}
 
// Helper function
void findSmallestLargestPrimes(TreeNode* root, int& smallest, int& largest) {
    if (root == NULL) {
        return;
    }
    if (isPrime(root->val)) {
        if (root->val < smallest) {
            smallest = root->val;
        }
        if (root->val > largest) {
            largest = root->val;
        }
    }
    findSmallestLargestPrimes(root->left, smallest, largest);
    findSmallestLargestPrimes(root->right, smallest, largest);
}
 
// Main function to find the product of the smallest and largest prime numbers in a binary tree
int findProductOfSmallestLargestPrimes(TreeNode* root) {
    int smallest = INT_MAX;
    int largest = INT_MIN;
    findSmallestLargestPrimes(root, smallest, largest);
    if (smallest == INT_MAX || largest == INT_MIN) {
        return -1;
    }
    return smallest * largest;
}
 
// Driver code
int main() {
   
    // Example 1:
    TreeNode* root1 = new TreeNode(4);
    root1->left = new TreeNode(5);
    root1->right = new TreeNode(7);
    root1->left->left = new TreeNode(1);
    root1->left->right = new TreeNode(3);
    root1->right->left = new TreeNode(5);
    root1->right->right = new TreeNode(8);
    cout << findProductOfSmallestLargestPrimes(root1) << endl;
   
    return 0;
}


Java




/*package whatever //do not write package name here */
import java.util.*;
 
class TreeNode {
    int val;
    TreeNode left;
    TreeNode right;
 
    TreeNode(int x) {
        val = x;
        left = null;
        right = null;
    }
}
 
public class Main {
    // Function to check if a number is prime
    static boolean isPrime(int n) {
        if (n <= 1) {
            return false;
        }
        for (int i = 2; i <= Math.sqrt(n); i++) {
            if (n % i == 0) {
                return false;
            }
        }
        return true;
    }
 
    // Helper function
    static void findSmallestLargestPrimes(TreeNode root, int[] smallest, int[] largest) {
        if (root == null) {
            return;
        }
        if (isPrime(root.val)) {
            if (root.val < smallest[0]) {
                smallest[0] = root.val;
            }
            if (root.val > largest[0]) {
                largest[0] = root.val;
            }
        }
        findSmallestLargestPrimes(root.left, smallest, largest);
        findSmallestLargestPrimes(root.right, smallest, largest);
    }
 
    // Main function to find the product of the smallest and largest prime numbers in a binary tree
    static int findProductOfSmallestLargestPrimes(TreeNode root) {
        int[] smallest = { Integer.MAX_VALUE };
        int[] largest = { Integer.MIN_VALUE };
        findSmallestLargestPrimes(root, smallest, largest);
        if (smallest[0] == Integer.MAX_VALUE || largest[0] == Integer.MIN_VALUE) {
            return -1;
        }
        return smallest[0] * largest[0];
    }
 
    // Driver code
    public static void main(String[] args) {
        // Example 1:
        TreeNode root1 = new TreeNode(4);
        root1.left = new TreeNode(5);
        root1.right = new TreeNode(7);
        root1.left.left = new TreeNode(1);
        root1.left.right = new TreeNode(3);
        root1.right.left = new TreeNode(5);
        root1.right.right = new TreeNode(8);
        System.out.println(findProductOfSmallestLargestPrimes(root1));
    }
}
//This code is contributed by Sameer Hake


Python3




import math
 
class TreeNode:
    def __init__(self, x):
        self.val = x
        self.left = None
        self.right = None
 
# Function to check if a number is prime
def isPrime(n):
    if n <= 1:
        return False
    for i in range(2, int(math.sqrt(n)) + 1):
        if n % i == 0:
            return False
    return True
 
# Helper function
def findSmallestLargestPrimes(root, smallest, largest):
    if root is None:
        return
    if isPrime(root.val):
        if root.val < smallest[0]:
            smallest[0] = root.val
        if root.val > largest[0]:
            largest[0] = root.val
    findSmallestLargestPrimes(root.left, smallest, largest)
    findSmallestLargestPrimes(root.right, smallest, largest)
 
# Main function to find the product of the smallest and largest prime numbers in a binary tree
def findProductOfSmallestLargestPrimes(root):
    smallest = [float('inf')]
    largest = [float('-inf')]
    findSmallestLargestPrimes(root, smallest, largest)
    if smallest[0] == float('inf') or largest[0] == float('-inf'):
        return -1
    return smallest[0] * largest[0]
 
# Driver code
# Example 1:
root1 = TreeNode(4)
root1.left = TreeNode(5)
root1.right = TreeNode(7)
root1.left.left = TreeNode(1)
root1.left.right = TreeNode(3)
root1.right.left = TreeNode(5)
root1.right.right = TreeNode(8)
print(findProductOfSmallestLargestPrimes(root1))


C#




using System;
 
class TreeNode {
    public int val;
    public TreeNode left;
    public TreeNode right;
 
    public TreeNode(int x) {
        val = x;
        left = null;
        right = null;
    }
}
 
public class Program {
    // Function to check if a number is prime
    static bool IsPrime(int n) {
        if (n <= 1) {
            return false;
        }
        for (int i = 2; i <= Math.Sqrt(n); i++) {
            if (n % i == 0) {
                return false;
            }
        }
        return true;
    }
 
    // Helper function
    static void FindSmallestLargestPrimes(TreeNode root, ref int smallest, ref int largest) {
        if (root == null) {
            return;
        }
        if (IsPrime(root.val)) {
            if (root.val < smallest) {
                smallest = root.val;
            }
            if (root.val > largest) {
                largest = root.val;
            }
        }
        FindSmallestLargestPrimes(root.left, ref smallest, ref largest);
        FindSmallestLargestPrimes(root.right, ref smallest, ref largest);
    }
 
    // Main function to find the product of the smallest and largest prime numbers in a binary tree
    static int FindProductOfSmallestLargestPrimes(TreeNode root) {
        int smallest = int.MaxValue;
        int largest = int.MinValue;
        FindSmallestLargestPrimes(root, ref smallest, ref largest);
        if (smallest == int.MaxValue || largest == int.MinValue) {
            return -1;
        }
        return smallest * largest;
    }
 
    // Driver code
    public static void Main(string[] args) {
        // Example 1:
        TreeNode root1 = new TreeNode(4);
        root1.left = new TreeNode(5);
        root1.right = new TreeNode(7);
        root1.left.left = new TreeNode(1);
        root1.left.right = new TreeNode(3);
        root1.right.left = new TreeNode(5);
        root1.right.right = new TreeNode(8);
        Console.WriteLine(FindProductOfSmallestLargestPrimes(root1));
    }
}
//This code is contributed by Sameer Hake


Javascript




class TreeNode {
    constructor(x) {
        this.val = x;
        this.left = null;
        this.right = null;
    }
}
 
// Function to check if a number is prime
function isPrime(n) {
    if (n <= 1) {
        return false;
    }
    for (let i = 2; i <= Math.sqrt(n); i++) {
        if (n % i === 0) {
            return false;
        }
    }
    return true;
}
 
// Helper function
function findSmallestLargestPrimes(root, smallest, largest) {
    if (root === null) {
        return;
    }
    if (isPrime(root.val)) {
        if (root.val < smallest[0]) {
            smallest[0] = root.val;
        }
        if (root.val > largest[0]) {
            largest[0] = root.val;
        }
    }
    findSmallestLargestPrimes(root.left, smallest, largest);
    findSmallestLargestPrimes(root.right, smallest, largest);
}
 
// Main function to find the product of the smallest and largest prime numbers in a binary tree
function findProductOfSmallestLargestPrimes(root) {
    let smallest = [Number.MAX_VALUE];
    let largest = [Number.MIN_VALUE];
    findSmallestLargestPrimes(root, smallest, largest);
    if (smallest[0] === Number.MAX_VALUE || largest[0] === Number.MIN_VALUE) {
        return -1;
    }
    return smallest[0] * largest[0];
}
 
// Driver code
let root1 = new TreeNode(4);
root1.left = new TreeNode(5);
root1.right = new TreeNode(7);
root1.left.left = new TreeNode(1);
root1.left.right = new TreeNode(3);
root1.right.left = new TreeNode(5);
root1.right.right = new TreeNode(8);
console.log(findProductOfSmallestLargestPrimes(root1));


Output

21


Time Complexity : O(N sqrt(N)), where N is the number of nodes in the binary tree.

Auxiliary Space : O(H), where H is the height of the binary tree. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
12 Jul, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments