Saturday, November 23, 2024
Google search engine
HomeData Modelling & AIMaximize sum by multiplying adjacent difference of Binary String with any digit

Maximize sum by multiplying adjacent difference of Binary String with any digit

Given a binary string S and a string of non-zero digits P of length N, the task is to maximize the sum using the given operations, which can be used as my times you can:

  • You can choose a substring of length 2 or 3.
  • Delete that substring after calculating the absolute difference of adjacent elements from left to right and take any single digit from the string P and multiply that with the absolute difference obtained by chosen substring.

Examples:

Input: N = 4, S = 1001, P = 6574
Output: 13
Explanation: For string S = 1001, choose a substring from index 1 to 2 as substring= 10. Absolute difference = |1 – 0| = 1 Multiply it with the digit 7 of string P = 7*1 = 7. Now chosen substring (10) is deleted from string (1001) and remaining string is = 01.
Then, choose a substring from index 1 to 2 as substring = 01. Absolute difference = |0-1| = 1, Multiply it with the 6 of string P = 6*1 = 6. Now substring is deleted and string S is empty, and total maximum sum that can obtain is 7+6 = 13.    

Input: N = 4, S = 1111, P = 1221
Output: 2
Explanation: For, string S = 1111, choose a sub-array from index 1 to 3 as sub-array = 111. Absolute difference of first left two elements of chosen substring = |1-1| = 0, Now substring is = 01.(By replacing obtained abs. difference with first two elements).
Now, absolute difference of first left two elements of current sub-array (01) = |0-1| = 1. Total absolute difference  for this substring is 1. Take digit 2 from P and multiply it with obtained absolute difference = 1*2= 2. Now delete this substring(111) from S(1111), Then remained S is = 1. 
We cannot make any operations further, Because S has single element and have not any adjacent element. Therefore, Maximum sum that can obtain is = 2.

Approach: Implement the idea below to solve the problem:

The problem can be solved by using Stack data structure and greedy approach to choose a digit from string P for multiplication. For knowing the exact algorithm to solve the problem see the Algorithm section below.

Follow the steps to solve the problem:

  • Initialize a Stack (say stk) and create a counter and sum variables.
  • Make an ArrayList lets call it digits to store digits of string P and sort it.
  • Run a loop from 1 to N and do 
    • If stk is empty or the top of stk = current_element, push the typecasted integer element in the stack.
    • Else if top of stk is not the same as current_element, pop the peek element from stk and add (1*last element of digits) into sum variable also remove used digits from the list.
  • Now it is possible that some element remained in the stack. Therefore, run a while loop till the stk has no element in it. Count the number of 1 remaining in the stk in the counter variable.
  • Modify the counter variable’s value now with (counter/3). The reason is that 3 ones can make absolute difference as 1, same as the input 2 in the example above.
  • Do the same, add (1*last element of digits ArrayList) into sum variable also remove used digits from the list, while counter is greater than 0.
  • Print the value of the sum variable.

Below is the implementation of the above approach.

C++




// C++ code to implement the approach.
 
#include <bits/stdc++.h>
using namespace std;
// Function to find the maximum possible sum
int maxSum(string S, string P, int N)
{
    // List to store digits of string P
    vector<int> digits;
 
    // Loop for initializing digits of
    // string P into list
    for (int i = 0; i < P.length(); i++) {
 
        // Initializing digits by
        // typecasting it from string
        // to integer
 
        digits.push_back(P[i] - 48);
        // digits.add(Integer.parseInt("" + P.charAt(i)));
    }
 
    // Sorting digits of list so that
    // we can get max element at last
    // index each time using greedy
    // approach
    sort(digits.begin(), digits.end());
    // digits.sort(null);
 
    int sum = 0;
    stack<int> s;
 
    // Loop for traversing on string
    for (int i = 0; i < N; i++) {
 
        // Creating current character
        // as string so that in-built
        // typecasted function can be
        // apply to below string str1
        string str1 = "";
        str1 += S[i];
 
        // Typecasted value of string
        int typecasted_int = stoi(str1);
 
        // Condition when stack is empty
        if (s.empty()) {
            s.push(typecasted_int);
        }
 
        // Condition when peek element
        // of stack is equal to current
        // typecasted element
        else if (s.top() == typecasted_int) {
            s.push(typecasted_int);
        }
 
        // Condition when peek element
        // is not equal to current
        // typecasted element
        else if (s.top() != typecasted_int) {
            sum += digits.back();
 
            // Removing used digit from list
            digits.pop_back();
            s.pop();
        }
    }
 
    int counter = 0;
 
    // While loop will run till the
    // stack is not empty
    while (!s.empty()) {
 
        // If peek element found
        // to be equal to 1
        if (s.top() == 1) {
            counter++;
        }
        s.pop();
    }
 
    // Three 111 can make abs
    // difference 1 Therefore total
    // number of 1 are divided by 3.
    counter = counter / 3;
 
    // Adding (abs diff.)*digit by
    // getting abs difference from
    // counter variable
    while (counter-- > 0) {
        sum += digits.back();
 
        // Removing used digit from list
        digits.pop_back();
    }
    return sum;
}
 
// Driver code
int main()
{
    string S = "1001";
    string P = "6574";
    int N = S.size();
 
    // Function call
    cout << (maxSum(S, P, N));
}
 
// This code is contributed by garg28harsh.


Java




// Java code to implement the approach.
 
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
    // Function to find the maximum possible sum
    static long maxSum(String S, String P, int N)
    {
        // List to store digits of string P
        ArrayList<Integer> digits = new ArrayList<>();
 
        // Loop for initializing digits of
        // string P into list
        for (int i = 0; i < P.length(); i++) {
 
            // Initializing digits by
            // typecasting it from string
            // to integer
            digits.add(Integer.parseInt("" + P.charAt(i)));
        }
 
        // Sorting digits of list so that
        // we can get max element at last
        // index each time using greedy
        // approach
        digits.sort(null);
 
        long sum = 0;
        Stack<Integer> s = new Stack<>();
 
        // Loop for traversing on string
        for (int i = 0; i < N; i++) {
 
            // Creating current character
            // as string so that in-built
            // typecasted function can be
            // apply to below string str1
            String str1 = "" + S.charAt(i);
 
            // Typecasted value of string
            Integer typecasted_int = Integer.parseInt(str1);
 
            // Condition when stack is empty
            if (s.isEmpty()) {
                s.push(typecasted_int);
            }
 
            // Condition when peek element
            // of stack is equal to current
            // typecasted element
            else if (s.peek() == typecasted_int) {
                s.push(typecasted_int);
            }
 
            // Condition when peek element
            // is not equal to current
            // typecasted element
            else if (s.peek() != typecasted_int) {
                sum += 1
                       * (int)(digits.get(digits.size()
                                          - 1));
 
                // Removing used digit from list
                digits.remove(
                    digits.get(digits.size() - 1));
                s.pop();
            }
        }
 
        int counter = 0;
 
        // While loop will run till the
        // stack is not empty
        while (!s.isEmpty()) {
 
            // If peek element found
            // to be equal to 1
            if (s.peek() == 1) {
                counter++;
            }
            s.pop();
        }
 
        // Three 111 can make abs
        // difference 1 Therefore total
        // number of 1 are divided by 3.
        counter = counter / 3;
 
        // Adding (abs diff.)*digit by
        // getting abs difference from
        // counter variable
        while (counter-- > 0) {
            sum += 1 * digits.get(digits.size() - 1);
 
            // Removing used digit from list
            digits.remove(digits.get(digits.size() - 1));
        }
        return sum;
    }
 
    // Driver code
    public static void main(String args[])
    {
        String S = "1001";
        String P = "6574";
        int N = S.length();
 
        // Function call
        System.out.println(maxSum(S, P, N));
    }
}


Python




from typing import List
 
# Function to find the maximum possible sum
def maxSum(S, P, N):
    # List to store digits of string P
    digits = []
 
    # Loop for initializing digits of
    # string P into list
    for i in range(len(P)):
        # Initializing digits by
        # typecasting it from string to integer
        digits.append(int(P[i]))
 
    # Sorting digits of list so that
    # we can get max element at last
    # index each time using greedy
    # approach
    digits.sort()
 
    sum = 0
    s = []
    # Loop for traversing on string
    for i in range(N):
        # Creating current character
        # as string so that in-built
        # typecasted function can be
        # apply to below string str1
        typecasted_int = int(S[i])
 
        # Condition when stack is empty
        if not s:
            s.append(typecasted_int)
        # Condition when peek element
        # of stack is equal to current
        # typecasted element
        elif s[-1] == typecasted_int:
            s.append(typecasted_int)
        # Condition when peek element
        # is not equal to current
        # typecasted element
        elif s[-1] != typecasted_int:
            sum += digits[-1]
            # Removing used digit from list
            del digits[-1]
            del s[-1]
 
    counter = 0
    # While loop will run till the
    # stack is not empty
    while s:
        # If peek element found
        # to be equal to 1
        if s[-1] == 1:
            counter += 1
        del s[-1]
    # Three 111 can make abs
    # difference 1 Therefore total
    # number of 1 are divided by 3.
    counter = counter // 3
    # Adding (abs diff.)*digit by
    # getting abs difference from
    # counter variable
    while counter > 0:
        sum += digits[-1]
        # Removing used digit from list
        del digits[-1]
        counter -= 1
    return sum
 
# Driver code
if __name__ == "__main__":
    S = "1001"
    P = "6574"
    N = len(S)
 
    # Function call
    print(maxSum(S, P, N))


C#




// C# code to implement the approach.
 
using System;
using System.Collections;
using System.Collections.Generic;
 
public class GFG {
 
  // Function to find the maximum possible sum
  static long maxSum(string S, string P, int N)
  {
    // List to store digits of string P
    ArrayList digits = new ArrayList();
 
    // Loop for initializing digits of
    // string P into list
    for (int i = 0; i < P.Length; i++) {
 
      // Initializing digits by
      // typecasting it from string
      // to integer
      digits.Add(int.Parse("" + P[i]));
    }
 
    // Sorting digits of list so that
    // we can get max element at last
    // index each time using greedy
    // approach
    digits.Sort(null);
 
    long sum = 0;
    Stack s = new Stack();
 
    // Loop for traversing on string
    for (int i = 0; i < N; i++) {
 
      // Creating current character
      // as string so that in-built
      // typecasted function can be
      // apply to below string str1
      string str1 = "" + S[i];
 
      // Typecasted value of string
      int typecasted_int = int.Parse(str1);
 
      // Condition when stack is empty
      if (s.Count == 0) {
        s.Push(typecasted_int);
      }
 
      // Condition when peek element
      // of stack is equal to current
      // typecasted element
      else if ((int)s.Peek() == typecasted_int) {
        s.Push(typecasted_int);
      }
 
      // Condition when peek element
      // is not equal to current
      // typecasted element
      else if ((int)s.Peek() != typecasted_int) {
        sum += 1 * (int)(digits[digits.Count - 1]);
 
        // Removing used digit from list
        digits.Remove(digits[digits.Count - 1]);
        s.Pop();
      }
    }
 
    int counter = 0;
 
    // While loop will run till the
    // stack is not empty
    while (s.Count != 0) {
 
      // If peek element found
      // to be equal to 1
      if ((int)s.Peek() == 1) {
        counter++;
      }
      s.Pop();
    }
 
    // Three 111 can make abs
    // difference 1 Therefore total
    // number of 1 are divided by 3.
    counter = counter / 3;
 
    // Adding (abs diff.)*digit by
    // getting abs difference from
    // counter variable
    while (counter-- > 0) {
      sum += 1 * (int)digits[digits.Count - 1];
 
      // Removing used digit from list
      digits.Remove(digits[digits.Count - 1]);
    }
    return sum;
  }
 
  static public void Main()
  {
 
    // Code
    string S = "1001";
    string P = "6574";
    int N = S.Length;
 
    // Function call
    Console.WriteLine(maxSum(S, P, N));
  }
}
 
// This code is contributed by lokesh.


Javascript




// Javascript code to implement the approach.
 
// Function to find the maximum possible sum
function maxSum(S, P, N) {
    // List to store digits of string P
    let digits = [];
 
    // Loop for initializing digits of
    // string P into list
    for (let i = 0; i < P.length; i++) {
 
        // Initializing digits by
        // typecasting it from string
        // to integer
        digits.push(parseInt("" + P[i]));
    }
 
    // Sorting digits of list so that
    // we can get max element at last
    // index each time using greedy
    // approach
    digits.sort();
 
    let sum = 0;
    let s = [];
 
    // Loop for traversing on string
    for (let i = 0; i < N; i++) {
 
        // Creating current character
        // as string so that in-built
        // typecasted function can be
        // apply to below string str1
        let str1 = "" + S[i];
 
        // Typecasted value of string
        let typecasted_int = parseInt(str1);
 
        // Condition when stack is empty
        if (s.length == 0) {
            s.push(typecasted_int);
        }
 
        // Condition when peek element
        // of stack is equal to current
        // typecasted element
        else if (s[S.length - 1] == typecasted_int) {
            s.push(typecasted_int);
        }
 
        // Condition when peek element
        // is not equal to current
        // typecasted element
        else if (s[s.length - 1] != typecasted_int) {
            sum += 1
                * parseInt(digits[digits.length - 1]);
 
            // Removing used digit from list
            digits.pop();
            s.pop();
        }
    }
 
    let counter = 0;
 
    // While loop will run till the
    // stack is not empty
    while (s.length != 0) {
 
        // If peek element found
        // to be equal to 1
        if (s[S.length - 1] == 1) {
            counter++;
        }
        s.pop();
    }
 
    // Three 111 can make abs
    // difference 1 Therefore total
    // number of 1 are divided by 3.
    counter = counter / 3;
 
    // Adding (abs diff.)*digit by
    // getting abs difference from
    // counter variable
    while (counter-- > 0) {
        sum += 1 * digits[digits.length - 1];
 
        // Removing used digit from list
        digits.pop();
    }
    return sum;
}
 
// Driver code
let S = "1001";
let P = "6574";
let N = S.length;
 
// Function call
console.log(maxSum(S, P, N));
 
// This code is contributed by ksam24000


Output

13

Time Complexity: O(N * log(N)), because sorting is performed.
Auxiliary Space: O(N), as list is required to store digits. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
20 Jan, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments