With the help of Sigmoid activation function, we are able to reduce the loss during the time of training because it eliminates the gradient problem in machine learning model while training.
# Import matplotlib, numpy and math import matplotlib.pyplot as plt import numpy as np import math x = np.linspace( - 10 , 10 , 100 ) z = 1 / ( 1 + np.exp( - x)) plt.plot(x, z) plt.xlabel( "x" ) plt.ylabel( "Sigmoid(X)" ) plt.show() |
Output :
Example #1 :
# Import matplotlib, numpy and math import matplotlib.pyplot as plt import numpy as np import math x = np.linspace( - 100 , 100 , 200 ) z = 1 / ( 1 + np.exp( - x)) plt.plot(x, z) plt.xlabel( "x" ) plt.ylabel( "Sigmoid(X)" ) plt.show() |
Output :