Thursday, December 26, 2024
Google search engine
HomeLanguagesComplexity Cheat Sheet for Python Operations

Complexity Cheat Sheet for Python Operations

Python built-in data structures like list, sets, dictionaries provide a large number of operations making it easier to write concise code but not being aware of their complexity can result in unexpected slow behavior of your python code. 

Prerequisite: List, Dictionaries, Sets 

For example: 

A simple dictionary lookup Operation can be done by either : 
 

if key in d:

or

if dict.get(key)

The first has a time complexity of O(N) for Python2, O(1) for Python3 and the latter has O(1) which can create a lot of differences in nested statements. 

Important points:  

  1. Lists are similar to arrays with bidirectional adding and deleting capability.
  2. Dictionaries and Set use Hash Tables for insertion/deletion and lookup operations.

This Cheat sheet can be referred for choosing operations that are efficient with respect to time. 

List Operations

Operation Examples Complexity class
  Average case Amortised Worst case
Append l.append(item) O(1) O(1)
Clear l.clear() O(1) O(1)
Containment item in/not in l O(N) O(N)
Copy l.copy() O(N) O(N)
Delete del l[i] O(N) O(N)
Extend l.extend(…) O(N) O(N)
Equality l1==l2, l1!=l2 O(N) O(N)
Index l[i] O(1) O(1)
Iteration for item in l: O(N) O(N)
Length len(l) O(1) O(1)
Multiply k*l O(k*N) O(k*N)
Min, Max min(l), max(l) O(N) O(N)
Pop from end l.pop(-1) O(1) O(1)
Pop intermediate l.pop(item) O(N) O(N)
Remove l.remove(…) O(N) O(N)
Reverse l.reverse() O(N) O(N)
Slice l[x:y] O(y-x) O(y-x)
Sort l.sort() O(N*log(N)) O(N*log(N))
Store l[i]=item O(1) O(1)

For more information, refer to Internal working of list in Python

Note: Tuples have the same operations (non-mutable) and complexities. 

Dictionary Operations

Operation Examples Complexity class
  Average case Amortised Worst case
Clear d.clear() O(1) O(1)
Construction dict(…) O(len(d)) O(len(d))
Delete del d[k] O(1) O(N)
Get d.get() O(1) O(N)
Iteration(key, value, item) for item in d: O(N) O(N)
Length len(d) O(1) O(1)
Pop d.pop(item) O(1) O(N)
Pop Item d.popitem() O(1) O(1)
Returning Views d.values() O(1) O(1)
Returning keys d.keys() O(1) O(1)
Fromkeys d.fromkeys(seq) O(len(seq)) O(len(seq))

Note: Defaultdict has operations same as dict with same time complexity as it inherits from dict.  

Set Operations 

Operation Examples Complexity class
  Average case Amortised Worst case
Add s.add(item) O(1) O(N)
Clear s.clear() O(1) O(1)
Copy s.copy() O(N) O(N)
Containment item in/not in s O(1) O(N)
Creation set(…) O(len(s)) O(len(s))
Discard s.discard(item) O(1) O(N)
Difference s1-s2 O(len(s1)) O(len(s1))
Difference Update s1.difference_update(s2) O(len(s2))
Equality s1==s2, s1!=s2 O(min(len(s1), len(s2))) O(min(len(s1), len(s2)))
Intersection s1 & s2 O(min(len(s1), len(s2))) O(min(len(s1), len(s2)))
Iteration for item in s: O(N) O(N)
Is Subset s1<=s2 O(len(s1)) O(len(s1))
Is Superset s1>=s2 O(len(s2)) O(len(s1))
Pop s.pop() O(1) O(N)
Union s1|s2 O(len(s1)+len(s2))
Symmetric Difference s1^s2 len(s1) O(len(s1)*len(s2))

For more information, refer to Internal working of Set in Python 

Note: Frozen sets have the same operations (non-mutable) and complexities. 

 

RELATED ARTICLES

Most Popular

Recent Comments