DataFrame Data structure are the heart of Pandas library. DataFrames are basically two dimension Series object. They have rows and columns with rows representing the index and columns representing the content. Now, let’s see how to Select all columns, except one given column in Pandas DataFrame in Python.
Creating a DataFrame:
Python3
# import pandas library import pandas as pd # create a Dataframe data = pd.DataFrame({ 'course_name' : [ 'Data Structures' , 'Python' , 'Machine Learning' ], 'student_name' : [ 'A' , 'B' , 'C' ], 'student_city' : [ 'Chennai' , 'Pune' , 'Delhi' ], 'student_gender' : [ 'M' , 'F' , 'M' ] }) # show the Dataframe data |
Output:
Using loc[] to select all columns, except one given column
This GeeksForGeeks Dataframe is just a two dimension array with numerical index. Therefore, to except only one column we could use the columns methods to get all columns and use a not operator to exclude the columns which are not needed. This method works only when the Dataframe is not multi indexed (did not have more than one index).
Example 1: Using Dataframe.loc[ ] with ‘!=’
Python3
df = data.loc[ : , data.columns ! = 'student_gender' ] # show the dataframe df |
Output:
Example 2: Using Dataframe.loc[ ] with isin
Python3
df = data.loc[:, ~data.columns.isin([ 'student_gender' ])] # showing the dataframe df |
Output:
Using drop() Method to select all columns, except one given column
Dataframe supports drop() method to drop a particular column. It accepts two arguments, column/row name and axis
Example: Select all columns, except one ‘student_city’ column in Pandas Dataframe.
Python3
# drop method df = data.drop( 'student_city' , axis = 1 ) # show the dataframe df |
Output:
Using Series.difference() to select all columns, except one given column
Using Series.difference() method and [ ] operator together. Series.difference() Method returns a new Index with elements from the index that are not in other.
Example: Select all columns, except one ‘student_name’ column in Pandas Dataframe.
Python3
df = data[data.columns.difference([ 'student_name' ])] # show the dataframe df |
Output: