The shape
attribute of a NumPy array returns a tuple representing the dimensions of the array. For a two-dimensional array, the shape tuple contains two values: the number of rows and the number of columns.
Example 1: Using .shape Attribute
Here we are finding the number of rows and columns of a given matrix using Numpy.shape.
Python
import numpy as np matrix = np.array([[ 9 , 9 , 9 ], [ 8 , 8 , 8 ]]) dimensions = np.shape(matrix) rows, columns = dimensions print ( "Rows:" , rows) print ( "Columns:" , columns) |
Output:
Rows: 2
Columns: 3
Here we are using numpy.reshape() to find number of rows and columns of a matrix.
Python
import numpy as np matrix = np.arange( 1 , 10 ).reshape(( 3 , 3 )) # Original matrix print (matrix) # Number of rows and columns of the said matrix print (matrix.shape) |
Output:
[[1 2 3]
[4 5 6]
[7 8 9]]
(3,3)
Example 2: Using Indexing
Here we are finding the number of rows and columns of a given matrix using Indexing.
Python
import numpy as np matrix = np.array([[ 4 , 3 , 2 ], [ 8 , 7 , 6 ]]) rows = matrix.shape[ 0 ] columns = matrix.shape[ 1 ] print ( "Rows:" , rows) print ( "Columns:" , columns) |
Output:
Rows: 2
Columns: 3