Tuesday, December 31, 2024
Google search engine
HomeLanguagesnumpy.argmin() in Python

numpy.argmin() in Python

The numpy.argmin() method returns indices of the min element of the array in a particular axis. 
 

Syntax : 

numpy.argmin(array, axis = None, out = None)

Parameters : 

array : Input array to work on 
axis  : [int, optional]Along a specified axis like 0 or 1
out   : [array optional]Provides a feature to insert output to the out
          array and it should be of appropriate shape and dtype

Return :  

Array of indices into the array with same shape as array.shape
 with the dimension along axis removed.

Code 1 :  

Python




# Python Program illustrating
# working of argmin()
  
import numpy as geek 
  
# Working on 1D array
array = geek.arange(8)
print("INPUT ARRAY : \n", array)
  
  
# returning Indices of the min element
# as per the indices
print("\nIndices of min element : ", geek.argmin(array, axis=0))


Output :  

INPUT ARRAY : 
 [0 1 2 3 4 5 6 7]

Indices of min element :  0

Code 2 :  

Python




# Python Program illustrating
# working of argmin()
  
import numpy as geek 
  
# Working on 2D array
array =  geek.random.randint(16, size=(4, 4))
print("INPUT ARRAY : \n", array)
  
# returning Indices of the min element
# as per the indices
  
'''   
   [[ 8 13  5  0]
   [ 0  2  5  3]
   [10  7 15 15]
   [ 3 11  4 12]]
     ^  ^  ^  ^
     0  2  4  0  - element
     1  1  3  0  - indices
'''
print("\nIndices of min element : ", geek.argmin(array, axis = 0))


Output : 

INPUT ARRAY : 
 [[ 8 13  5  0]
 [ 0  2  5  3]
 [10  7 15 15]
 [ 3 11  4 12]]

Indices of min element :  [1 1 3 0]

Code 3 : 

Python




# Python Program illustrating
# working of argmin()
  
import numpy as geek 
  
# Working on 2D array
array =  geek.arange(10).reshape(2, 5)
print("array : \n", array)
  
array[0][0] = 10
array[1][1] = 1
array[0][1] = 1
print("\narray : \n", array)
       
# Returns min element
print("\narray : ", geek.argmin(array))
  
# First occurrence of an min element is given
print("\nmin ELEMENT INDICES : ", geek.argmin(array, axis = 0))


Output :

array : 
 [[0 1 2 3 4]
 [5 6 7 8 9]]

array : 
 [[10  1  2  3  4]
 [ 5  1  7  8  9]]

array :  1

min ELEMENT INDICES :  [1 0 0 0 0]

References : 
https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.argmin.html#numpy.argmin
Note : 
These codes won’t run on online IDE’s. Please run them on your systems to explore the working 

This article is contributed by Mohit Gupta_OMG 😀. If you like Lazyroar and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the Lazyroar main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments