Monday, November 18, 2024
Google search engine
HomeLanguagesNLP | Part of Speech – Default Tagging

NLP | Part of Speech – Default Tagging

What is Part-of-speech (POS) tagging ? It is a process of converting a sentence to forms – list of words, list of tuples (where each tuple is having a form (word, tag)). The tag in case of is a part-of-speech tag, and signifies whether the word is a noun, adjective, verb, and so on. Default tagging is a basic step for the part-of-speech tagging. It is performed using the DefaultTagger class. The DefaultTagger class takes ‘tag’ as a single argument. NN is the tag for a singular noun. DefaultTagger is most useful when it gets to work with most common part-of-speech tag. that’s why a noun tag is recommended. Code #1 : How it works ? 

Python3




# Loading Libraries
from nltk.tag import DefaultTagger
 
# Defining Tag
tagging = DefaultTagger('NN')
 
# Tagging
tagging.tag(['Hello', 'Geeks'])


Output :

[('Hello', 'NN'), ('Geeks', 'NN')]

Each tagger has a tag() method that takes a list of tokens (usually list of words produced by a word tokenizer), where each token is a single word. tag() returns a list of tagged tokens – a tuple of (word, tag). How DefaultTagger works ? It is a subclass of SequentialBackoffTagger and implements the choose_tag() method, having three arguments.

  • list of tokens
  • index of the current token, to choose the tag.
  • list of the previous tags

  Code #2 : Tagging Sentences 

Python3




# Loading Libraries
from nltk.tag import DefaultTagger
 
# Defining Tag
tagging = DefaultTagger('NN')
 
tagging.tag_sents([['welcome', 'to', '.'], ['Geeks', 'for', 'Geeks']])


Output :

[[('welcome', 'NN'), ('to', 'NN'), ('.', 'NN')],
 [('Geeks', 'NN'), ('for', 'NN'), ('Geeks', 'NN')]]

Note: Every tag in the list of tagged sentences (in the above code) is NN as we have used DefaultTagger class. Code #3 : Illustrating how to untag. 

Python3




from nltk.tag import untag
untag([('Geeks', 'NN'), ('for', 'NN'), ('Geeks', 'NN')])


Output :

['Geeks', 'for', 'Geeks']

RELATED ARTICLES

Most Popular

Recent Comments