Monday, November 18, 2024
Google search engine
HomeLanguagesGrouping Rows in pandas

Grouping Rows in pandas

Pandas is the most popular Python library that is used for data analysis. It provides highly optimized performance with back-end source code is purely written in C or Python.

Let’s see how to group rows in Pandas Dataframe with help of multiple examples.

Example 1:

For grouping rows in Pandas, we will start with creating a pandas dataframe first.




# importing Pandas
import pandas as pd
  
# example dataframe
example = {'Team':['Arsenal', 'Manchester United', 'Arsenal',
                   'Arsenal', 'Chelsea', 'Manchester United',
                   'Manchester United', 'Chelsea', 'Chelsea', 'Chelsea'],
                     
           'Player':['Ozil', 'Pogba', 'Lucas', 'Aubameyang',
                       'Hazard', 'Mata', 'Lukaku', 'Morata'
                                         'Giroud', 'Kante'],
                                           
           'Goals':[5, 3, 6, 4, 9, 2, 0, 5, 2, 3] }
  
df = pd.DataFrame(example)
  
print(df)


Now, create a grouping object, means an object that represents that particular grouping.




total_goals = df['Goals'].groupby(df['Team'])
  
# printing the means value
print(total_goals.mean())    


Output:

 
Example 2:




import pandas as pd
  
# example dataframe
example = {'Team':['Australia', 'England', 'South Africa',
                   'Australia', 'England', 'India', 'India',
                        'South Africa', 'England', 'India'],
                          
           'Player':['Ricky Ponting', 'Joe Root', 'Hashim Amla',
                     'David Warner', 'Jos Buttler', 'Virat Kohli',
                     'Rohit Sharma', 'David Miller', 'Eoin Morgan',
                                                 'Dinesh Karthik'],
                                                   
          'Runs':[345, 336, 689, 490, 989, 672, 560, 455, 342, 376],
            
          'Salary':[34500, 33600, 68900, 49000, 98899,
                    67562, 56760, 45675, 34542, 31176] }
  
df = pd.DataFrame(example)
  
total_salary = df['Salary'].groupby(df['Team'])
  
# printing the means value
print(total_salary.mean())     


Output:

RELATED ARTICLES

Most Popular

Recent Comments