Monday, January 13, 2025
Google search engine
HomeLanguagesHow to List values for each Pandas group?

How to List values for each Pandas group?

In this article, we’ll see how we can display all the values of each group in which a dataframe is divided. The dataframe is first divided into groups using the DataFrame.groupby() method. Then we modify it such that each group contains the values in a list.

First, Let’s create a Dataframe:

Python3




# import pandas library
import pandas as pd
  
# create a dataframe
df = pd.DataFrame({'a': ['A', 'A', 'B',
                          'B', 'B', 'C',
                          'C', 'D'], 
                    'b': [1, 2, 5,
                          3, 5, 4,
                          8, 6]})
# show the dataframe                  
df


Output:

Dataframe

Method 1: Using DataFrame.groupby() and Series.apply() together.
Example: We’ll create lists of all values of each group and store it in new column called “listvalues”.

Python3




# import pandas library
import pandas as pd
  
# create a dataframe
df = pd.DataFrame({'a': ['A', 'A', 'B',
                          'B', 'B', 'C',
                          'C', 'D'], 
                    'b': [1, 2, 5,
                          3, 5, 4,
                          8, 6]})
                   
# convert values of each group
# into a list
groups = df.groupby('a')['b'].apply(list)
  
print(groups)
  
# groups store in a new 
# column called listvalues
df1 = groups.reset_index(name 
                         = 'listvalues')
# show the dataframe
df1


Output:

Group into list

Method 2: Using DataFrame.groupby() and Series.agg().

Example: We use the lambda function inside the Series.agg() to convert the all values of a group to a list.

Python3




# import pandas library
import pandas as pd
  
# create a dataframe
df = pd.DataFrame( {'a': ['A', 'A', 'B',
                         'B', 'B', 'C'
                         'C', 'D'], 
                    'b': [1, 2, 5
                         3, 5, 4,
                         8, 6]}
                 )
# convert values of each group
# into a list
groups = df.groupby('a').agg(lambda
                             x: list(x))
  
print(groups)


Output:

Group into list

RELATED ARTICLES

Most Popular

Recent Comments