Pandas can be used to plot the Autocorrelation Plot on a graph. Plotting the Autocorrelation Plot on a graph can be done using the autocorrelation_plot() method of the plotting module. This function generates the Autocorrelation plot for time series.
Autocorrelation plot
Autocorrelation plots are a commonly used tool for checking randomness in a data set. This randomness is ascertained by computing autocorrelation for data values at varying time lags. It shows the properties of a type of data known as a time series. These plots are available in most general-purpose statistical software programs. It can be plotted using the pandas.plotting.autocorrelation_plot().
Syntax: pandas.plotting.autocorrelation_plot(series, ax=None, **kwargs)
Parameters:
- series: This parameter is the Time series to be used to plot.
- ax: This parameter is a matplotlib axes object. Its default value is None.
Returns: This function returns an object of class matplotlib.axis.Axes
Example 1:
Python3
# importing various package import pandas as pd import numpy as np import matplotlib.pyplot as plt # making Time series spacing = np.linspace( - 5 * np.pi, 5 * np.pi, num = 100 ) s = pd.Series( 0.7 * np.random.rand( 100 ) + 0.3 * np.sin(spacing)) # Creating Autocorrelation plot x = pd.plotting.autocorrelation_plot(s) # plotting the Curve x.plot() # Display plt.show() |
Output:
Example 2:
Python3
# importing various package import pandas as pd import numpy as np import matplotlib.pyplot as plt # making Time series data = np.array([ 12.0 , 24.0 , 7. , 20.0 , 7.0 , 22.0 , 18.0 , 22.0 , 6.0 , 7.0 , 20.0 , 13.0 , 8.0 , 5.0 , 8 ]) # Creating Autocorrelation plot x = pd.plotting.autocorrelation_plot(data) # plotting the Curve x.plot() # Display plt.show() |
Output: