Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface. There are various plots which can be used in Pyplot are Line Plot, Contour, Histogram, Scatter, 3D Plot, etc.
matplotlib.pyplot.subplots_adjust() Function
The subplots_adjust() function in pyplot module of matplotlib library is used to tune the subplot layout.
Syntax: matplotlib.pyplot.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
Parameters: This method accept the following parameters that are described below:
- left : This parameter is the left side of the subplots of the figure.
- right : This parameter is the right side of the subplots of the figure.
- bottom : This parameter is the bottom of the subplots of the figure.
- top : This parameter is the top of the subplots of the figure.
- wspace : This parameter is the amount of width reserved for space between subplots expressed as a fraction of the average axis width.
- hspace : This parameter is the amount of height reserved for space between subplots expressed as a fraction of the average axis height.
Below examples illustrate the matplotlib.pyplot.subplots_adjust() function in matplotlib.pyplot:
Example 1:
# Implementation of matplotlib function import matplotlib.pyplot as plt x = [ 1 , 12 , 3 , 9 ] y = [ 1 , 4 , 9 , 16 ] labels = [ 'Geeks1' , 'Geeks2' , 'Geeks3' , 'Geeks4' ] plt.plot(x, y) plt.xticks(x, labels, rotation = 'vertical' ) plt.margins( 0.2 ) plt.subplots_adjust(bottom = 0.15 ) plt.title( 'matplotlib.pyplot.subplots_adjust() Example' ) plt.show() |
Output:
Example 2:
# Implementation of matplotlib function import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import TextBox fig, ax = plt.subplots() plt.subplots_adjust(bottom = 0.2 ) t = np.arange( - 2.0 , 2.0 , 0.001 ) s = np.sin(t) + np.cos( 2 * t) initial_text = "sin(t) + cos(2t)" l, = plt.plot(t, s, lw = 2 ) def submit(text): ydata = eval (text) l.set_ydata(ydata) ax.set_ylim(np. min (ydata), np. max (ydata)) plt.draw() axbox = plt.axes([ 0.4 , 0.05 , 0.3 , 0.075 ]) text_box = TextBox(axbox, 'Formula Used : ' , initial = initial_text) text_box.on_submit(submit) fig.suptitle( 'matplotlib.pyplot.subplots_adjust() Example' ) plt.show() |
Output: