numpy.random.random()
is one of the function for doing random sampling in numpy. It returns an array of specified shape and fills it with random floats in the half-open interval [0.0, 1.0).
Syntax : numpy.random.random(size=None)
Parameters :
size : [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned.Return : Array of random floats in the interval
[0.0, 1.0).
or a single such random float if size not provided.
Code #1 :
# Python program explaining # numpy.random.random() function # importing numpy import numpy as geek # output array out_arr = geek.random.random(size = 3 ) print ( "Output 1D Array filled with random floats : " , out_arr) |
Output 1D Array filled with random floats : [ 0.21698734 0.01617363 0.70382199]
Code #2 :
# Python program explaining # numpy.random.random() function # importing numpy import numpy as geek # output array out_arr = geek.random.random(size = ( 2 , 4 )) print ( "Output 2D Array filled with random floats : " , out_arr) |
Output 2D Array filled with random floats : [[ 0.95423066 0.35595927 0.76048569 0.90163066] [ 0.41903408 0.85596254 0.21666156 0.05734769]]
Code #3 :
# Python program explaining # numpy.random.random() function # importing numpy import numpy as geek # output array out_arr = geek.random.random(( 2 , 3 , 2 )) print ( "Output 3D Array filled with random floats : " , out_arr) |
Output 3D Array filled with random floats : [[[ 0.07861816 0.79132387] [ 0.9112629 0.98162851] [ 0.0727613 0.03480279]] [[ 0.11267727 0.07631742] [ 0.47554553 0.83625053] [ 0.67781339 0.37856642]]]