numpy.count_nonzero()
function counts the number of non-zero values in the array arr.
Syntax : numpy.count_nonzero(arr, axis=None)
Parameters :
arr : [array_like] The array for which to count non-zeros.
axis : [int or tuple, optional] Axis or tuple of axes along which to count non-zeros. Default is None, meaning that non-zeros will be counted along a flattened version of arr.Return : [int or array of int] Number of non-zero values in the array along a given axis. Otherwise, the total number of non-zero values in the array is returned.
Code #1 :
# Python program explaining # numpy.count_nonzero() function # importing numpy as geek import numpy as geek arr = [[ 0 , 1 , 2 , 3 , 0 ], [ 0 , 5 , 6 , 0 , 7 ]] gfg = geek.count_nonzero(arr) print (gfg) |
Output :
6
Code #2 :
# Python program explaining # numpy.count_nonzero() function # importing numpy as geek import numpy as geek arr = [[ 0 , 1 , 2 , 3 , 4 ], [ 5 , 0 , 6 , 0 , 7 ]] gfg = geek.count_nonzero(arr, axis = 0 ) print (gfg) |
Output :
7