Thursday, December 26, 2024
Google search engine
HomeLanguagesCount the NaN values in one or more columns in Pandas DataFrame

Count the NaN values in one or more columns in Pandas DataFrame

Let us see how to count the total number of NaN values in one or more columns in a Pandas DataFrame. In order to count the NaN values in the DataFrame, we are required to assign a dictionary to the DataFrame and that dictionary should contain numpy.nan values which is a NaN(null) value.

Consider the following DataFrame.




# importing the modules
import numpy as np
import pandas as pd
   
# creating the DataFrame
dictionary = {'Names': ['Simon', 'Josh', 'Amen'
                        'Habby', 'Jonathan', 'Nick', 'Jake'],
              'Capitals': ['VIENNA', np.nan, 'BRASILIA'
                           np.nan, 'PARIS', 'DELHI', 'BERLIN'],
              'Countries': ['AUSTRIA', 'BELGIUM', 'BRAZIL'
                            np.nan, np.nan, 'INDIA', np.nan]}
table = pd.DataFrame(dictionary, columns = ['Names'
                                           'Capitals'
                                           'Countries'])
  
# displaying the DataFrame
display(table)


Output :

Example 1 : Counting the NaN values in a single column.




print("Number of null values in column 1 : " + 
       str(table.iloc[:, 1].isnull().sum()))
print("Number of null values in column 2 : " + 
       str(table.iloc[:, 2].isnull().sum()))


Output :

Number of null values in column 1 : 2
Number of null values in column 2 : 3

Example 2 : Counting the NaN values in a single row.




print("Number of null values in row 0 : " + 
       str(table.iloc[0, ].isnull().sum()))
print("Number of null values in row 1 : " + 
       str(table.iloc[1, ].isnull().sum()))
print("Number of null values in row 3 : " + 
       str(table.iloc[3, ].isnull().sum()))


Output :

Number of null values in row 0 : 0
Number of null values in row 1 : 1
Number of null values in row 3 : 2

Example 3 : Counting the total NaN values in the DataFrame.




print("Total Number of null values in the DataFrame : " + 
       str(table.isnull().sum().sum()))


Output :

Total Number of null values in the DataFrame : 5

Example 4 : Counting the NaN values in all the columns.




display(table.isnull().sum())


Output :

Last Updated :
17 Aug, 2020
Like Article
Save Article

<!–

–>

Similar Reads
Related Tutorials
RELATED ARTICLES

Most Popular

Recent Comments