Tuesday, January 7, 2025
Google search engine
HomeLanguagesConcatenate multiIndex into single index in Pandas Series

Concatenate multiIndex into single index in Pandas Series

In this article, we will see how to concatenate multi-index to a single index in Pandas Series. Multi-index refers to having more than one index with the same name.

Create a sample series:

Python3




# importing pandas module
import pandas as pd
import numpy as np
 
# Creating series data for address details
index_values = pd.Series([('sravan', 'address1'),
                          ('sravan', 'address2'),
                          ('sudheer', 'address1'),
                          ('sudheer', 'address2')])
 
# assigning values with integers
data = pd.Series(np.arange(1, 5),
                 index=index_values)
 
# display data
print(data)


Output:

Joining two or more data is known as concatenation. Here we are going to concatenate the index using map function.

Syntax:

map(fun, iter)

  • fun: function
  • iter: iterations.

Below are various examples that depict how to concatenate multi-index into a single index in Series:

Example 1:

This code explains the joining of addresses into one based on multi-index.

Python3




# importing pandas module
import pandas as pd
 
# Creating series data for address details
index_values = pd.Series([('sravan', 'address1'),
                          ('sravan', 'address2'),
                          ('sudheer', 'address1'),
                          ('sudheer', 'address2')])
 
# assigning values with integers
data = pd.Series(np.arange(1, 5), index=index_values)
 
# display data
print(data)
 
# mapping with data using '_' symbol with join
data1 = data.index.map('_'.join)
 
print(data1)


Output:

Example 2:

This code is an example for all the given same name, but different values passed in a tuple.

Python3




# importing pandas module
import pandas as pd
 
# importing numpy module
import numpy as np
 
# Creating series data for address details with same name.
index_values = pd.Series([('sravan', 'address1'),
                          ('sravan', 'address2'),
                          ('sravan', 'address3'),
                          ('sravan', 'address4')])
 
# assigning values with integers
data = pd.Series(np.arange(1, 5),
                 index=index_values)
 
# display data
print(data)
 
# mapping with data using '_' symbol with join
data1 = data.index.map('_'.join)
 
print(data1)


Output:

Example 3: 

This code gives a demo on multiple users given in nested list data structure.

Python3




# importing pandas module
import pandas as pd
 
# importing numpy module
import numpy as np
 
# Creating series data for address details
# with same name with nested lists.
index_values = pd.Series([['sravan', 'address1'],
                          ['sravan', 'address2'],
                          ['sravan', 'address3'],
                          ['sravan', 'address4'],
                          ['vani', 'address5'],
                          ['vani', 'address6'],
                          ['vani', 'address7'],
                          ['vani', 'address8']])
 
# assigning values with integers
data = pd.Series(np.arange(1, 9),
                 index=index_values)
 
# display data
print(data)
 
# mapping with data using '_' symbol with join
data1 = data.index.map('_'.join)
 
print(data1)


Output:

Example 4:

This code explains the college data with respect to address passed in a nested list separated by ‘/’ operator.

Python3




# importing pandas module
import pandas as pd
 
# importing numpy module
import numpy as np
 
# Creating series data for address details w.r.t
# college names  with same name with nested lists.
index_values = pd.Series([['sravan', 'address1', 'vignan'],
                          ['sravan', 'address2', 'vignan'],
                          ['sravan', 'address3', 'vignan'],
                          ['sravan', 'address4', 'vignan'],
                          ['vani', 'address5', 'vignan lara'],
                          ['vani', 'address6', 'vignan lara'],
                          ['vani', 'address7', 'vignan lara'],
                          ['vani', 'address8', 'vignan lara']])
 
# assigning values with integers
data = pd.Series(np.arange(1, 9),
                 index=index_values)
 
# display data
print(data)
 
# mapping with data using '/' symbol with join
data1 = data.index.map('/'.join)
 
print(data1)


Output:

RELATED ARTICLES

Most Popular

Recent Comments