Saturday, December 28, 2024
Google search engine
HomeLanguagesHow to Remove rows in Numpy array that contains non-numeric values?

How to Remove rows in Numpy array that contains non-numeric values?

Many times we have non-numeric values in NumPy array. These values need to be removed, so that array will be free from all these unnecessary values and look more decent. It is possible to remove all rows containing Nan values using the Bitwise NOT operator and np.isnan() function.

Example 1:

Python3




# Importing Numpy module
import numpy as np
  
# Creating 2X3 2-D Numpy array
n_arr = np.array([[10.5, 22.5, 3.8],
                  [41, np.nan, np.nan]])
  
print("Given array:")
print(n_arr)
  
print("\nRemove all rows containing non-numeric elements")
print(n_arr[~np.isnan(n_arr).any(axis=1)])


Output:

In the above example, we remove row containing non-numeric values from the 2X3 Numpy array.

Example 2:

Python3




# Importing Numpy module 
import numpy as np
  
# Creating 3X3 2-D Numpy array
n_arr = np.array([[10.5, 22.5, 3.8], 
                  [23.45, 50, 78.7],
                  [41, np.nan, np.nan]])
  
print("Given array:")
print(n_arr)
  
print("\nRemove all rows containing non-numeric elements")
print(n_arr[~np.isnan(n_arr).any(axis=1)])


Output:

In the above example, we remove row containing non-numeric values from the 3X3 Numpy array.

Example 3:

Python3




# Importing Numpy module
import numpy as np
  
# Creating 5X4 2-D Numpy array
n_arr = np.array([[10.5, 22.5, 3.8, 5],
                  [23.45, 50, 78.7, 3.5],
                  [41, np.nan, np.nan, 0],
                  [20, 50.20, np.nan, 2.5],
                  [18.8, 50.60, 8.8, 58.6]])
  
print("Given array:")
print(n_arr)
  
print("\nRemove all rows containing non-numeric elements")
print(n_arr[~np.isnan(n_arr).any(axis=1)])


Output:

In the above example, we remove rows containing non-numeric values from the 5X4 Numpy array.

RELATED ARTICLES

Most Popular

Recent Comments