Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.
matplotlib.colors.to_rgba()
The matplotlib.colors.to_rgba() function is used convert c(color) to an RGBA color. It converts the color name into an array of RGBA encoded colors. It returns an RGBA tuple of four floats from 0-1.
Syntax: matplotlib.colors.to_rgba(c, alpha=None)
Parameters:
- c: It is a matplotlib color or a np.ma.masked color.
- alpha: It is an optional parameter that accepts a scalar. It forces the alpha value if alpha is not None. But if c is “none”(case-sensitive) it maps to (0, 0, 0, 0).
Returns: It returns a tuple of scalars in the form of (r, g, b, a).
Example 1:
Python3
import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from matplotlib import colors as mcolors import numpy as np # simple example showing many # lines in a single set of axes x_axis = np.arange( 100 ) # Here are different sets of # y to plot vs x y_axis = x_axis[: 50 , np.newaxis] + x_axis[np.newaxis, :] segments = np.zeros(( 50 , 100 , 2 )) segments[:, :, 1 ] = y_axis segments[:, :, 0 ] = x_axis #some supported values to test # masked array : segments = np.ma.masked_where((segments > 50 ) & (segments < 60 ), segments) # setting the plot limits. figure, axes = plt.subplots() axes.set_xlim(x_axis. min (), x_axis. max ()) axes.set_ylim(y_axis. min (), y_axis. max ()) # colors is sequence of rgba # tuples and .rgba implementation colors = [mcolors.to_rgba(c) for c in plt.rcParams[ 'axes.prop_cycle' ].by_key()[ 'color' ]] line_segments = LineCollection(segments, linewidths = ( 0.5 , 1 , 1.5 , 2 ), colors = colors, linestyle = 'solid' ) axes.add_collection(line_segments) axes.set_title( ' With masked arrays' ) plt.show() |
Output:
Example 2:
Python3
import matplotlib.pyplot as plt import matplotlib.colors as mcolors # helper function to plot a color table def colortable(colors, title, colors_sort = True , emptycols = 0 ): # cell dimensions width = 212 height = 22 swatch_width = 48 margin = 12 topmargin = 40 # Sorting colors based on hue, # saturation, value and name. # implementation of to_rgb if colors_sort is True : to_hsv = sorted (( tuple (mcolors.rgb_to_hsv(mcolors.to_rgba(color)[: 3 ])), name) for name, color in colors.items()) names = [name for hsv, name in to_hsv] else : names = list (colors) length_of_names = len (names) length_cols = 4 - emptycols length_rows = length_of_names / / length_cols + int (length_of_names % length_cols > 0 ) width2 = width * 4 + 2 * margin height2 = height * length_rows + margin + topmargin dpi = 72 figure, axes = plt.subplots(figsize = (width2 / dpi, height2 / dpi), dpi = dpi) figure.subplots_adjust(margin / width2, margin / height2, (width2 - margin) / width2, (height2 - topmargin) / height2) axes.set_xlim( 0 , width * 4 ) axes.set_ylim(height * (length_rows - 0.5 ), - height / 2. ) axes.yaxis.set_visible( False ) axes.xaxis.set_visible( False ) axes.set_axis_off() axes.set_title(title, fontsize = 24 , loc = "left" , pad = 10 ) for i, name in enumerate (names): rows = i % length_rows cols = i / / length_rows y = rows * height swatch_start_x = width * cols swatch_end_x = width * cols + swatch_width text_pos_x = width * cols + swatch_width + 7 axes.text(text_pos_x, y, name, fontsize = 14 , horizontalalignment = 'left' , verticalalignment = 'center' ) axes.hlines(y, swatch_start_x, swatch_end_x, color = colors[name], linewidth = 18 ) return figure colortable(mcolors.BASE_COLORS, "Base Colors" , colors_sort = False , emptycols = 1 ) colortable(mcolors.TABLEAU_COLORS, "Tableau Palette" , colors_sort = False , emptycols = 2 ) colortable(mcolors.CSS4_COLORS, "CSS Colors" ) plt.show() |
Output: