Wednesday, December 25, 2024
Google search engine
HomeLanguagesplotly.express.line() function in Python

plotly.express.line() function in Python

Plotly library of Python can be very useful for data visualization and understanding the data simply and easily. Plotly graph objects are a high-level interface to plotly which are easy to use.

plotly.express.line() function

This function is used to create a line plot. It can also be created using the pandas dataframe where each row of data_frame is represented as vertex of a polyline mark in 2D space.

Syntax: plotly.express.line(data_frame=None, x=None, y=None, line_group=None, color=None, line_dash=None, hover_name=None, hover_data=None, title=None, template=None, width=None, height=None)

Parameters:

data_frame: DataFrame or array-like or dict needs to be passed for column names.

x, y: This parameters is either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x and y axis in cartesian coordinates respectively. 

color: This parameters assign color to marks.

line_group: This parameter is used to group rows of data_frame into lines.

line_dash: This parameter is used to assign dash-patterns to lines.

hover_name:  Values from this column or array_like appear in bold in the hover tooltip.

hover_data: This parameter is used to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.

Example 1:

Python3




import plotly.express as px
  
df = px.data.tips()
  
plot = px.line(df, x = 'day', y = 'time')
plot.show()


Output:

Example 2: Using color argument

Python3




import plotly.express as px
  
df = px.data.tips()
  
plot = px.line(df, x = 'time'
               y = 'total_bill',
               color = 'sex')
plot.show()


Output:

Example 3: Using the line_group argument

Python3




import plotly.express as px
  
df = px.data.tips()
  
plot = px.line(df, x = 'time',
               y = 'total_bill',
               color = 'sex'
               line_group = 'day')
  
plot.show()


Output:

RELATED ARTICLES

Most Popular

Recent Comments