In pandas, we can determine Period Range with Frequency with the help of period_range(). pandas.period_range() is one of the general functions in Pandas which is used to return a fixed frequency PeriodIndex, with day (calendar) as the default frequency.
Syntax: pandas.to_numeric(arg, errors=’raise’, downcast=None)
Parameters:
start : Left bound for generating periods
end : Right bound for generating periods
periods : Number of periods to generate
freq : Frequency alias
name : Name of the resulting PeriodIndexReturns: PeriodIndex
Example 1:
Python3
import pandas as pd # initialize country country = [ "India" , "Australia" , "Pak" , "Sri Lanka" , "England" , "Bangladesh" ] # perform period_range() function match_date = pd.period_range( '8/1/2020' , '8/6/2020' , freq = 'D' ) # generates dataframes df = pd.DataFrame(country, index = match_date, columns = [ 'Country' ]) df |
Output:
Example
Python3
import pandas as pd # initialize country Course = [ "DSA" , "OOPS" , "DBMS" , "Computer Network" , "System design" , ] # perform period_range() function webinar_month = pd.period_range( '8/1/2020' , '12/1/2020' , freq = 'M' ) # generates dataframes df = pd.DataFrame(Course, index = webinar_month, columns = [ 'Course' ]) df |
Output:
Example 3:
Python3
import pandas as pd # initialize gold price gold_price = [ "32k" , "34k" , "37k" , "33k" , "38k" , "39k" , "35k" , "32k" , "42k" , "52k" , "62k" , "52k" , "38k" , "39k" , "35k" , "33k" ] # perform period_range() function price_month = pd.period_range(start = pd.Period( '2019Q1' , freq = 'Q' ), end = pd.Period( '2020Q2' , freq = 'Q' ), freq = 'M' ) # generates dataframes df = pd.DataFrame(gold_price, index = price_month, columns = [ 'Price' ]) df |
Output: