Bokeh is a Python interactive data visualization. It renders its plots using HTML and JavaScript. It targets modern web browsers for presentation providing elegant, concise construction of novel graphics with high-performance interactivity.
Bokeh can be used to plot horizontal bar graphs. Plotting horizontal bar graphs can be done using the hbar()
method of the plotting
module.
plotting.figure.hbar()
Syntax : hbar(parameters)
Parameters :
- y : y-coordinates of the center of the horizontal bars
- height : thickness of the horizontal bars
- right : x-coordinates of the right edges
- left : x-coordinates of the left edges, default is 0
- fill_alpha : fill alpha value of the horizontal bars
- fill_color : fill color value of the horizontal bars
- hatch_alpha : hatch alpha value of the horizontal bars, default is 1
- hatch_color : hatch color value of the horizontal bars, default is black
- hatch_extra : hatch extra value of the horizontal bars
- hatch_pattern : hatch pattern value of the horizontal bars
- hatch_scale : hatch scale value of the horizontal bars, default is 12
- hatch_weight : hatch weight value of the horizontal bars, default is 1
- line_alpha : percentage value of line alpha, default is 1
- line_cap : value of line cap for the line, default is butt
- line_color : color of the line, default is black
- line_dash : value of line dash such as :
- solid
- dashed
- dotted
- dotdash
- dashdot
default is solid
- line_dash_offset : value of line dash offset, default is 0
- line_join : value of line join, default in bevel
- line_width : value of the width of the line, default is 1
- name : user-supplied name for the model
- tags : user-supplied values for the model
Other Parameters :
- alpha : sets all alpha keyword arguments at once
- color : sets all color keyword arguments at once
- legend_field : name of a column in the data source that should be used
- legend_group : name of a column in the data source that should be used
- legend_label : labels the legend entry
- muted : determines whether the glyph should be rendered as muted or not, default is False
- name : optional user-supplied name to attach to the renderer
- source : user-supplied data source
- view : view for filtering the data source
- visible : determines whether the glyph should be rendered or not, default is True
- x_range_name : name of an extra range to use for mapping x-coordinates
- y_range_name : name of an extra range to use for mapping y-coordinates
- level : specifies the render level order for this glyph
Returns : an object of class
GlyphRenderer
Example 1 :In this example we will be using the default values for plotting the graph.
# importing the modules from bokeh.plotting import figure, output_file, show # file to save the model output_file( "gfg.html" ) # instantiating the figure object graph = figure(title = "Bokeh Horizontal Bar Graph" ) # y-coordinates to be plotted y = [ 1 , 2 , 3 , 4 , 5 ] # x-coordinates of the right edges right = [ 1 , 2 , 3 , 4 , 5 ] # height / thickness of the bars height = 0.5 # plotting the graph graph.hbar(y, right = right, height = height) # displaying the model show(graph) |
Output :
Example 2 :In this example we will be plotting horizontal bars with different parameters.
# importing the modules from bokeh.plotting import figure, output_file, show # file to save the model output_file( "gfg.html" ) # instantiating the figure object graph = figure(title = "Bokeh Horizontal Bar Graph" ) # name of the x-axis graph.xaxis.axis_label = "x-axis" # name of the y-axis graph.yaxis.axis_label = "y-axis" # y-coordinates to be plotted y = [ 1 , 2 , 3 , 4 , 5 ] # x-coordinates of the right edges right = [ 1 , 2 , 3 , 4 , 5 ] # height / thickness of the bars height = [ 0.5 , 0.4 , 0.3 , 0.2 , 0.1 ] # color values of the bars fill_color = [ "yellow" , "pink" , "blue" , "green" , "purple" ] # plotting the graph graph.hbar(y, right = right, height = height, fill_color = fill_color) # displaying the model show(graph) |
Output :
<!–
–>
Please Login to comment…