Wednesday, December 25, 2024
Google search engine
HomeLanguagesHow to count unique ID after groupBy in PySpark Dataframe ?

How to count unique ID after groupBy in PySpark Dataframe ?

In this article, we will discuss how to count unique ID after group by in PySpark Dataframe.

For this, we will use two different methods:

  • Using distinct().count() method.
  • Using SQL Query.

But at first, let’s Create Dataframe for demonstration:

Python3




# importing module
import pyspark
  
# importing sparksession from pyspark.sql
# module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of students  data
data = [["1", "sravan", "vignan", 95],
        ["2", "ojaswi", "vvit", 78],
        ["3", "rohith", "vvit", 89],
        ["2", "ojaswi", "vvit", 100],
        ["4", "sridevi", "vignan", 88],
        ["1", "sravan", "vignan", 78],
        ["4", "sridevi", "vignan", 90],
        ["5", "gnanesh", "iit", 67]]
  
# specify column names
columns = ['student ID', 'student NAME',
           'college', 'subject marks']
  
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
  
print("the data is ")
dataframe.show()


Output:

Method 1 : Using groupBy() and distinct().count() method

groupBy(): Used to group the data based on column name

Syntax: dataframe=dataframe.groupBy(‘column_name1’).sum(‘column name 2’)

distinct().count(): Used to count and display the distinct rows form the dataframe

Syntax: dataframe.distinct().count()

Example 1:

Python3




# group by studentID by marks 
dataframe = dataframe.groupBy(
  'student ID').sum('subject marks')
  
# display count of unique ID
print("Unique ID count after Group By : ",
      dataframe.distinct().count())
  
print("the data is ")
  
# display  values  of unique ID
dataframe.distinct().show()


Output:

Unique ID count after Group By :  5
the data is 
+----------+------------------+
|student ID|sum(subject marks)|
+----------+------------------+
|         3|                89|
|         5|                67|
|         1|               173|
|         4|               178|
|         2|               178|
+----------+------------------+

Example 2: Count and display a unique ID of single columns:

Python3




# group by studentID by marks 
dataframe = dataframe.groupBy(
  'student ID').sum('subject marks')
  
# display count of unique ID
print("Unique ID count after Group By : ",
      dataframe.distinct().count())
  
  
print("the data is ")
  
# display  values  of unique ID
dataframe.select('student ID').distinct().show()


Output:

Unique ID count after Group By :  5
the data is 
+----------+
|student ID|
+----------+
|         3|
|         5|
|         1|
|         4|
|         2|
+----------+

Method 2: Using SQL query

We can get a unique ID count by using spark.sql 

Syntax:

spark.sql(“sql query”).show()

Python3




# importing module
import pyspark
  
# importing sparksession from pyspark.sql 
# module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of students  data
data = [["1", "sravan", "vignan", 95],
        ["2", "ojaswi", "vvit", 78],
        ["3", "rohith", "vvit", 89],
        ["2", "ojaswi", "vvit", 100],
        ["4", "sridevi", "vignan", 88],
        ["1", "sravan", "vignan", 78],
        ["4", "sridevi", "vignan", 90],
        ["5", "gnanesh", "iit", 67]]
  
# specify column names
columns = ['student ID', 'student NAME',
           'college', 'subject marks']
  
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
  
# group by studentID by marks
dataframe = dataframe.groupBy('student ID').sum('subject marks')
  
# create view for the ablve dataframe and
# view name is "DATA"
dataframe.createOrReplaceTempView("DATA")
  
# count unique data with sql query
spark.sql("SELECT DISTINCT(COUNT('student ID'))  \
FROM DATA GROUP BY 'subject marks'").show()


Output:

+-----------------+
|count(student ID)|
+-----------------+
|                5|
+-----------------+

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments