Friday, December 27, 2024
Google search engine
HomeLanguagesPython – Get particular Nested level Items from Dictionary

Python – Get particular Nested level Items from Dictionary

Given a dictionary, extract items from a particular level.

Examples:

Input : {“Gfg” : {  “n1”: 3, “nd2”: { “n2” : 6 }}, “is” : { “ne1”: 5, “ndi2”: { “ne2” : 8, “ne22” : 10 } }}, K = 2 
Output : {‘n2’: 6, ‘ne2’: 8, ‘ne22’: 10} 
Explanation : 2nd nesting items are extracted.

Input : {“Gfg” : { “n1”: 3, “nd2”: { “n2” : 6 }}, “is” : { “ne1”: 5, “ndi2”: { “ne2” : 8, “ne22” : 10 } }}, K = 1 
Output : {“n1”: 3, “ne1”: 5} 
Explanation : Elements of 1st nesting extracted. 

Method #1 : Using isinstance() + recursion

This is one of the ways in which this task can be performed. In this, we perform required recursion for inner nestings, and isinstance is used to differentiate between dict instance and other data types to test for nesting.

Python3




# Python3 code to demonstrate working of
# Get particular Nested level Items from Dictionary
# Using isinstance() + recursion
 
# helper function
 
 
def get_items(test_dict, lvl):
 
    # querying for lowest level
    if lvl == 0:
        yield from ((key, val) for key, val in test_dict.items()
                    if not isinstance(val, dict))
    else:
 
        # recur for inner dictionaries
        yield from ((key1, val1) for val in test_dict.values()
                    if isinstance(val, dict) for key1, val1 in get_items(val, lvl - 1))
 
 
# initializing dictionary
test_dict = {"Gfg": { "n1": 3, "nd2": { "n2": 6 }},
             "is": { "ne1": 5, "ndi2": { "ne2": 8, "ne22": 10 } }}
 
# printing original dictionary
print("The original dictionary is : " + str(test_dict))
 
# initializing K
K = 2
 
# calling function
res = get_items(test_dict, K)
 
# printing result
print("Required items : " + str(dict(res)))


Output

The original dictionary is : {‘Gfg’: {‘n1’: 3, ‘nd2’: {‘n2’: 6}}, ‘is’: {‘ne1’: 5, ‘ndi2’: {‘ne2’: 8, ‘ne22’: 10}}} Required items : {‘n2’: 6, ‘ne2’: 8, ‘ne22’: 10}

Method #2: Using Stack :

Step by step Algorithm :

  1. Define a function  ‘get_items’ that takes two inputs test_dict and lvl and creates a list named ‘stack’ and appends a tuple of test_dict and lvl.
  2. Create an empty list named ‘items’.
  3. Start a while loop until stack is not empty and inside the loop, pop the last element from the stack and store it in current_dict and current_lvl variables.
  4. Start a for loop for items of the current_dict.
  5. Check if the value of the item is a dictionary or not.
    a) If it is not a dictionary, then check if the current_lvl is 0.
    b) If current_lvl is 0, then append the tuple of key and value in the items list.
    c) If it is a dictionary, then check if the current_lvl is greater than 0.
    d) If it is greater than 0, then append the tuple of the value and current_lvl-1 in the stack list.
  6. Return the items list.
  7. Print the original dictionary and K.
  8. Call the ‘get_items’ function with test_dict and K as input and store the result in res.
  9. Print the required items.

Python3




def get_items(test_dict, lvl):
    stack = [(test_dict, lvl)]
    items = []
    while stack:
        current_dict, current_lvl = stack.pop()
        for key, val in current_dict.items():
            if type(val) != dict:
                if current_lvl == 0:
                    items.append((key, val))
            else:
                if current_lvl > 0:
                    stack.append((val, current_lvl - 1))
    return items
 
test_dict = {"Gfg": { "n1": 3, "nd2": { "n2": 6 }},
             "is": { "ne1": 5, "ndi2": { "ne2": 8, "ne22": 10 } }}
 
print("The original dictionary is : " + str(test_dict))
 
K = 2
 
res = get_items(test_dict, K)
 
print("Required items : " + str(dict(res)))


Output

The original dictionary is : {'Gfg': {'n1': 3, 'nd2': {'n2': 6}}, 'is': {'ne1': 5, 'ndi2': {'ne2': 8, 'ne22': 10}}}
Required items : {'ne2': 8, 'ne22': 10, 'n2': 6}

Complexity Analysis : 

Time complexity: O(n)

The time complexity of this code is O(n), where n is the total number of items in the dictionary. This is because It visits each item only once.

Space complexity: O(m)

The space complexity of this algorithm is O(m), where m is the maximum depth of the nested dictionary. This is because it uses a stack to store the nested dictionaries.

RELATED ARTICLES

Most Popular

Recent Comments