IIR stands for Infinite Impulse Response, It is one of the striking features of many linear-time invariant systems that are distinguished by having an impulse response h(t)/h(n) which does not become zero after some point but instead continues infinitely.
What is IIR Bandpass Butterworth ?
It basically behaves just like an ordinary digital Bandpass Butterworth Filter with an infinite impulse response.
The specifications are as follows:
- Pass band frequency: 1400-2100 Hz
- Stop band frequency: 1050-24500 Hz
- Pass band ripple: 0.4dB
- Stop band attenuation: 50 dB
- Sampling frequency: 7 kHz
We will plot the magnitude, phase, impulse, step response of the filter.
Step-by-step Approach:
Step 1: Importing all the necessary libraries.
Python3
# import required library import numpy as np import scipy.signal as signal import matplotlib.pyplot as plt |
Step 2: Defining user defined functions mfreqz() and impz(). [mfreqz is a function for magnitude and phase plot & impz is function for impulse and step response]
Python3
def mfreqz(b, a, Fs): # Compute frequency response of the filter # using signal.freqz function wz, hz = signal.freqz(b, a) # Calculate Magnitude from hz in dB Mag = 20 * np.log10( abs (hz)) # Calculate phase angle in degree from hz Phase = np.unwrap(np.arctan2(np.imag(hz), np.real(hz))) * ( 180 / np.pi) # Calculate frequency in Hz from wz Freq = wz * Fs / ( 2 * np.pi) # Plot filter magnitude and phase responses using subplot. fig = plt.figure(figsize = ( 10 , 6 )) # Plot Magnitude response sub1 = plt.subplot( 2 , 1 , 1 ) sub1.plot(Freq, Mag, 'r' , linewidth = 2 ) sub1.axis([ 1 , Fs / 2 , - 100 , 5 ]) sub1.set_title( 'Magnitude Response' , fontsize = 20 ) sub1.set_xlabel( 'Frequency [Hz]' , fontsize = 20 ) sub1.set_ylabel( 'Magnitude [dB]' , fontsize = 20 ) sub1.grid() # Plot phase angle sub2 = plt.subplot( 2 , 1 , 2 ) sub2.plot(Freq, Phase, 'g' , linewidth = 2 ) sub2.set_ylabel( 'Phase (degree)' , fontsize = 20 ) sub2.set_xlabel(r 'Frequency (Hz)' , fontsize = 20 ) sub2.set_title(r 'Phase response' , fontsize = 20 ) sub2.grid() plt.subplots_adjust(hspace = 0.5 ) fig.tight_layout() plt.show() # Define impz(b,a) to calculate impulse response # and step response of a system # input: b= an array containing numerator coefficients, # a= an array containing denominator coefficients def impz(b, a): # Define the impulse sequence of length 60 impulse = np.repeat( 0. , 60 ) impulse[ 0 ] = 1. x = np.arange( 0 , 60 ) # Compute the impulse response response = signal.lfilter(b, a, impulse) # Plot filter impulse and step response: fig = plt.figure(figsize = ( 10 , 6 )) plt.subplot( 211 ) plt.stem(x, response, 'm' , use_line_collection = True ) plt.ylabel( 'Amplitude' , fontsize = 15 ) plt.xlabel(r 'n (samples)' , fontsize = 15 ) plt.title(r 'Impulse response' , fontsize = 15 ) plt.subplot( 212 ) step = np.cumsum(response) # Compute step response of the system plt.stem(x, step, 'g' , use_line_collection = True ) plt.ylabel( 'Amplitude' , fontsize = 15 ) plt.xlabel(r 'n (samples)' , fontsize = 15 ) plt.title(r 'Step response' , fontsize = 15 ) plt.subplots_adjust(hspace = 0.5 ) fig.tight_layout() plt.show() |
Step 3:Define variables with the given specifications of the filter.
Python3
# Given specification Fs = 7000 # Sampling frequency in Hz fp = np.array([ 1400 , 2100 ]) # Pass band frequency in Hz fs = np.array([ 1050 , 2450 ]) # Stop band frequency in Hz Ap = 0.4 # Pass band ripple in dB As = 50 # stop band attenuation in dB |
Step 4: Computing the cut-off frequency
Python3
# Compute pass band and stop band edge frequencies wp = fp / (Fs / 2 ) # Normalized passband edge frequencies w.r.t. Nyquist rate ws = fs / (Fs / 2 ) # Normalized stopband edge frequencies |
Step 5: Compute cut-off frequency & order
Python3
# Compute order of the digital Butterworth filter using signal.buttord N, wc = signal.buttord(wp, ws, Ap, As, analog = True ) # Print the order of the filter and cutoff frequencies print ( 'Order of the filter=' , N) print ( 'Cut-off frequency=' , wc) |
Output:
Step 6: Compute the filter co-efficient
Python3
# Design digital Butterworth band pass # filter using signal.butter function z, p = signal.butter(N, wc, 'bandpass' ) # Print numerator and denomerator # coefficients of the filter print ( 'Numerator Coefficients:' , z) print ( 'Denominator Coefficients:' , p) |
Output:
Step 7: Compute frequency response using signal.freqz() function
Python3
# Compute frequency response of the filter using signal.freqz function wz, hz = signal.freqz(z, p) |
Step 8: Plotting the Magnitude & Phase Response
Python3
# Call mfreqz to plot the magnitude and phase response mfreqz(z, p, Fs) |
Output:
Step 9: Plotting the Impulse and Step Response
Python3
# Call impz function to plot impulse # and step response of the filter impz(z, p) |
Output:
Below is the implementation:
Python3
# import required library import numpy as np import scipy.signal as signal import matplotlib.pyplot as plt # Compute magnitude and phase response # using mfreqz function def mfreqz(b, a, Fs): # Compute frequency response of the filter # using signal.freqz function wz, hz = signal.freqz(b, a) # Calculate Magnitude from hz in dB Mag = 20 * np.log10( abs (hz)) # Calculate phase angle in degree from hz Phase = np.unwrap(np.arctan2(np.imag(hz), np.real(hz))) * ( 180 / np.pi) # Calculate frequency in Hz from wz Freq = wz * Fs / ( 2 * np.pi) # Plot filter magnitude and phase responses using subplot. fig = plt.figure(figsize = ( 10 , 6 )) # Plot Magnitude response sub1 = plt.subplot( 2 , 1 , 1 ) sub1.plot(Freq, Mag, 'r' , linewidth = 2 ) sub1.axis([ 1 , Fs / 2 , - 100 , 5 ]) sub1.set_title( 'Magnitude Response' , fontsize = 20 ) sub1.set_xlabel( 'Frequency [Hz]' , fontsize = 20 ) sub1.set_ylabel( 'Magnitude [dB]' , fontsize = 20 ) sub1.grid() # Plot phase angle sub2 = plt.subplot( 2 , 1 , 2 ) sub2.plot(Freq, Phase, 'g' , linewidth = 2 ) sub2.set_ylabel( 'Phase (degree)' , fontsize = 20 ) sub2.set_xlabel(r 'Frequency (Hz)' , fontsize = 20 ) sub2.set_title(r 'Phase response' , fontsize = 20 ) sub2.grid() plt.subplots_adjust(hspace = 0.5 ) fig.tight_layout() plt.show() # Define impz(b,a) to calculate impulse response # and step response of a system # input: b= an array containing numerator coefficients, # a= an array containing denominator coefficients def impz(b, a): # Define the impulse sequence of length 60 impulse = np.repeat( 0. , 60 ) impulse[ 0 ] = 1. x = np.arange( 0 , 60 ) # Compute the impulse response response = signal.lfilter(b, a, impulse) # Plot filter impulse and step response: fig = plt.figure(figsize = ( 10 , 6 )) plt.subplot( 211 ) plt.stem(x, response, 'm' , use_line_collection = True ) plt.ylabel( 'Amplitude' , fontsize = 15 ) plt.xlabel(r 'n (samples)' , fontsize = 15 ) plt.title(r 'Impulse response' , fontsize = 15 ) plt.subplot( 212 ) step = np.cumsum(response) # Compute step response of the system plt.stem(x, step, 'g' , use_line_collection = True ) plt.ylabel( 'Amplitude' , fontsize = 15 ) plt.xlabel(r 'n (samples)' , fontsize = 15 ) plt.title(r 'Step response' , fontsize = 15 ) plt.subplots_adjust(hspace = 0.5 ) fig.tight_layout() plt.show() # Given specification Fs = 7000 # Sampling frequency in Hz fp = np.array([ 1400 , 2100 ]) # Pass band frequency in Hz fs = np.array([ 1050 , 2450 ]) # Stop band frequency in Hz Ap = 0.4 # Pass band ripple in dB As = 50 # stop band attenuation in dB # Compute pass band and stop band edge frequencies wp = fp / (Fs / 2 ) # Normalized passband edge frequencies w.r.t. Nyquist rate ws = fs / (Fs / 2 ) # Normalized stopband edge frequencies # Compute order of the digital Butterworth filter using signal.buttord N, wc = signal.buttord(wp, ws, Ap, As, analog = True ) # Print the order of the filter and cutoff frequencies print ( 'Order of the filter=' , N) print ( 'Cut-off frequency=' , wc) # Design digital Butterworth band pass # filter using signal.butter function z, p = signal.butter(N, wc, 'bandpass' ) # Print numerator and denomerator # coefficients of the filter print ( 'Numerator Coefficients:' , z) print ( 'Denominator Coefficients:' , p) # Compute frequency response of the filter # using signal.freqz function wz, hz = signal.freqz(z, p) # Call mfreqz to plot the magnitude and phase response mfreqz(z, p, Fs) # Call impz function to plot impulse # and step response of the filter impz(z, p) |
Output: