Friday, January 3, 2025
Google search engine
HomeLanguagesmatplotlib.pyplot.jet() in Python

matplotlib.pyplot.jet() in Python

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface.

matplotlib.pyplot.jet() Function:

The jet() function in pyplot module of matplotlib library is used to set the colormap to “jet”.

Syntax: matplotlib.pyplot.jet()

Parameters: This method does not accepts any parameter.

Returns: This method does not return any value.

Below examples illustrate the matplotlib.pyplot.jet() function in matplotlib.pyplot:

Example #1:




# Implementation of matplotlib function
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import numpy as np 
        
ang = 40
rad = 10
radm = 0.35
radii = np.linspace(radm, 0.95, rad)
        
angles = np.linspace(0, 4 * np.pi, ang)
angles = np.repeat(angles[..., np.newaxis], rad, axis = 1)
angles[:, 1::2] += np.pi / ang
        
x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()
z = (np.sin(4 * radii) * np.cos(4 * angles)).flatten()
        
triang = tri.Triangulation(x, y)
triang.set_mask(np.hypot(x[triang.triangles].mean(axis = 1),
                         y[triang.triangles].mean(axis = 1))
                       < radm)
        
tpc = plt.tripcolor(triang, z, shading ='flat')
plt.colorbar(tpc)
plt.jet()
plt.title('matplotlib.pyplot.jet() function Example',  
                                  fontweight ="bold")
plt.show()


Output:

Example #2:




# Implementation of matplotlib function
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LogNorm
           
dx, dy = 0.015, 0.05
x = np.arange(-3.0, 3.0, dx)
y = np.arange(-3.0, 3.0, dy)
X, Y = np.meshgrid(x, y)
        
extent = np.min(x), np.max(x), np.min(y), np.max(y)
         
       
Z1 = np.add.outer(range(6), range(6)) % 2
plt.imshow(Z1, cmap ="binary_r", interpolation ='nearest',
                              extent = extent, alpha = 1)
        
def Lazyroar(x, y):
    return (1 - x / 2 + x**5 + y**6) * np.exp(-(x**2 + y**2))
        
Z2 = Lazyroar(X, Y)
        
plt.imshow(Z2, alpha = 0.7, interpolation ='bilinear',
                 extent = extent)
plt.jet()
plt.title('matplotlib.pyplot.jet() function Example'
                                  fontweight ="bold")
plt.show()


Output:

RELATED ARTICLES

Most Popular

Recent Comments