In this post, we are going to see the datatype of the numpy object when the underlying data is of string type. In numpy, if the underlying data type of the given object is string then the dtype of object is the length of the longest string in the array. This is so because we cannot create variable length string in numpy since numpy needs to know how much space should be allocated for string.
Problem #1 : Given a numpy array whose underlying data is of string type. Find the dtype.
Solution : We will use numpy.dtype
attribute to check the dtype of the given object.
# importing the numpy library as np import numpy as np # Create a numpy array arr = np.array([ 'Ela' , 'Ed' , 'Brook' , 'Sia' , 'Katherine' ]) # Print the array print (arr) |
Output :
Now we will check the dtype of the given array object whose underlying data is of string type.
# Print the dtype print (arr.dtype) |
Output :
As we can see in the output, the dtype of the given array object is '<U9'
where 9 is the length of the longest string in the given array object.
Let’s verify this by checking the length of the longest string in the given object.
# Use vectorize function of numpy length_checker = np.vectorize( len ) # Find the length of each element arr_len = length_checker(arr) # Print the length of each element print (arr_len) # Print the maximum value print (arr_len. max ()) |
Output :
Problem #2 : Given a numpy array whose underlying data is of string type. Find the dtype.
Solution : We will use numpy.dtype
attribute to check the dtype of the given object.
# importing the numpy library as np import numpy as np # Create a numpy array arr = np.array([ 'New York' , 'Lisbon' , 'Beijing' , 'Quebec' ]) # Print the array print (arr) |
Output :
Now we will check the dtype of the given array object whose underlying data is of string type.
# Print the dtype print (arr.dtype) |
Output :
As we can see in the output, the dtype of the given array object is '<U8'
where 8 is the length of the longest string in the given array object.
Let’s verify this by checking the length of the longest string in the given object.
# Use vectorize function of numpy length_checker = np.vectorize( len ) # Find the length of each element arr_len = length_checker(arr) # Print the length of each element print (arr_len) # Print the maximum value print (arr_len. max ()) |
Output :