pandas.DataFrame(dtype=”category”) : For creating a categorical dataframe, dataframe() method has dtype attribute set to category.
All the columns in data-frame can be converted to categorical either during or after construction by specifying dtype=”category” in the DataFrame constructor.
Code :
# Python code explaining # constructing categorical data frame # importing libraries import numpy as np import pandas as pd # Constructing dataframe data = { 'col1' : [ 1 , 2 , 4 , 5 ], 'col2' : [ 3 , 4 , 5 , 6 ]} df1 = pd.DataFrame(data = data) print ( "df1 : \n" , df1) print ( "\n\ndf1 type :\n" , df1.dtypes) |
Output :
# Converting dataframe to category df2 = pd.DataFrame({ 'A' : list ( '1245' ), 'B' : list ( '3456' )}, dtype = "category" ) print ( "df2 : \n" , df2) print ( "\n\ndf2 type :\n" , df2.dtypes) print ( "\n\ndf2 column 0 :\n" , df2[ 'A' ]) print ( "\n\ndf2 column 1 :\n" , df2[ 'B' ]) |
Output :
# Conversion can be done using astype() df3 = pd.DataFrame({ 'A' : list ( 'efgh' ), 'B' : list ( 'aebc' )}) print ( "\n\ndf3 : \n" , df3) print ( "\ndf3 type :\n" , df3.dtypes) df4 = df3.astype( 'category' ) print ( "\n\ndf4 type:\n" , df4.dtypes) |
Output :