In Python, the determinant of a square array can be easily calculated using the NumPy package. This package is used to perform mathematical calculations on single and multi-dimensional arrays. numpy.linalg is an important module of NumPy package which is used for linear algebra.
We can use det() function of numpy.linalg module to find out the determinant of a square array.
Syntax: numpy.linalg.det(array)
Parameters:
array(…, M, M) array_like: Input array to calculate determinants for.
Returns:
det(…) array_like: Determinant of array.
Example 1: Determinant of 2X2 matrix.
Python3
# Importing libraries import numpy as np from numpy import linalg # Creating a 2X2 matrix matrix = np.array([[ 1 , 0 ], [ 3 , 6 ]]) print ( "Original 2-D matrix" ) print (matrix) # Output print ( "Determinant of the 2-D matrix:" ) print (np.linalg.det(matrix)) |
Output:
Original 2-D matrix [[1 0] [3 6]] Determinant of the 2-D matrix: 6.0
Example 2: Determinant of 3X3 matrix
Python3
# Importing libraries import numpy as np from numpy import linalg # Creating a 3X3 matrix matrix = np.array([[ 1 , 0 , 1 ], [ 1 , 2 , 0 ], [ 4 , 6 , 2 ]]) print ( "Original 3-D matrix" ) print (matrix) # Output print ( "Determinant of the 3-D matrix:" ) print (np.linalg.det(matrix)) |
Output:
Original 3-D matrix [[1 0 1] [1 2 0] [4 6 2]] Determinant of the 3-D matrix: 2.0
Example 3: Determinant of 4X4 matrix
Python3
# Importing libraries import numpy as np from numpy import linalg # Creating a 4X4 matrix matrix = np.array([[ 1 , 0 , 1 , 8 ], [ 1 , 2 , 0 , 3 ], [ 4 , 6 , 2 , 6 ], [ 0 , 3 , 6 , 4 ]]) print ( "Original 4-D matrix" ) print (matrix) # Output print ( "Determinant of the 4-D matrix:" ) print (np.linalg.det(matrix)) |
Output:
Original 4-D matrix [[1 0 1 8] [1 2 0 3] [4 6 2 6] [0 3 6 4]] Determinant of the 4-D matrix: 188.0