Tuesday, November 19, 2024
Google search engine
HomeLanguagesToolz module in Python

Toolz module in Python

Toolz package provides a set of utility functions for iterators, functions, and dictionaries. These functions extend the standard libraries itertools and functools and borrow heavily from the standard libraries of contemporary functional languages. This package consists of following modules –

dicttoolz

Functions –

  • assoc(d, key, value[, factory]) – Returns a new dict with new key value pair. It does not modify the initial dictionary.




    import toolz
      
      
    d = toolz.dicttoolz.assoc({'Geeks':0}, 'forGeeks', 1)
    print(d)

    
    

    Output –

    {'Geeks': 0, 'forGeeks': 1}
    
  • assoc_in(d, keys, value[, factory]) – Returns a new dict with new, potentially nested, key value pair




    import toolz
      
    d = toolz.dicttoolz.assoc_in({'Geeks':0}, 'forGeeks', 1)
    print(d)

    
    

    Output –

    {‘Geeks’: 0, ‘f’: {‘o’: {‘r’: {‘G’: {‘e’: {‘e’: {‘k’: {‘s’: 1}}}}}}}}

  • dissoc(d, *keys) – Returns a new dict with the given key(s) removed. It does not modify the initial dictionary.




    import toolz
      
    d = toolz.dicttoolz.dissoc({'g':0, 'e':1
                                'k':2, 's':3},
                                'k', 'e')
    print(d)

    
    

    Output –

    {'g': 0, 's': 3}
    
  • get_in(keys, ds[, default, no_default]) – Returns ds[I0][I1]…[IX] where [I0, I1, …, IX] are keys and ds is a nested dictionary. If ds[I0][I1]…[IX] cannot be found, it returns “default”.




    import toolz
      
      
    nested_dict ={'d1':{'k1':'v1', 'k2':'v2'}, 
                  'd2':{'k3':{'d2A':{'k4':'v4'}}}}
      
    d = toolz.dicttoolz.get_in(['d1'], nested_dict)
    print(d)
      
    d = toolz.dicttoolz.get_in(['d2', 'k3', 'd2A'], 
                               nested_dict)
    print(d)

    
    

    Output –

    {'k1': 'v1', 'k2': 'v2'}
    {'k4': 'v4'}
    
  • itemfilter(predicate, d[, factory]) – It filters items in dictionary by item.




    import toolz
      
      
    def func(item):
          
        key, val = item
          
        return key == ord(val)-65
      
    d = {0:'A', 1:'B', 3:'C', 5:'F'}
    print(toolz.dicttoolz.itemfilter(func, d))

    
    

    Output –

    {0: 'A', 1: 'B', 5: 'F'}
    
  • itemmap(func, d[, factory]) – Applies function to items of dictionary.




    import toolz
      
      
    d = {0:'A', 1:'B', 3:'C', 5:'F'}
    print(toolz.dicttoolz.itemmap(reversed, d))

    
    

    Output –

    {'A': 0, 'B': 1, 'C': 3, 'F': 5}
    
  • keyfilter(predicate, d[, factory]) – It filters items in dictionary by key.




    import toolz
      
      
    def func(key):
        return 5<= len(key)<7
      
    d = {'python': 0, 'julia': 1, 'java': 3, 'javascript': 5}
    print(toolz.dicttoolz.keyfilter(func, d))

    
    

    Output –

    {'python': 0, 'julia': 1}
    
  • keymap(func, d[, factory] – Applies function to keys of dictionary .




    import toolz
      
      
    def func(key):
        return ''.join(reversed(key))
      
    d = {'python': 0, 'julia': 1, 'java': 3, 'javascript': 5}
    print(toolz.dicttoolz.keymap(func, d))

    
    

    Output –

    {'nohtyp': 0, 'ailuj': 1, 'avaj': 3, 'tpircsavaj': 5}
    
  • merge(*dicts, **kwargs) – It merges a collection of dictionaries.




    import toolz
      
      
    dict1 = {1:1, 2:4}
    dict2 = {3:9, 2:8, 4:16}
    print(toolz.dicttoolz.merge(dict1, dict2))

    
    

    Output –

    {1: 1, 2: 8, 3: 9, 4: 16}
    
  • merge_with(func, *dicts, **kwargs) – Merges dictionaries and applies function to combined values.




    import toolz
      
      
    dict1 = {1:1, 2:4}
    dict2 = {3:9, 2:8, 1:1}
    print(toolz.dicttoolz.merge_with(sum, dict1, dict2))

    
    

    Output –

    {1: 2, 2: 12, 3: 9}
    
  • update_in(d, keys, func[, default, factory]) –Updates value in a nested dictionary. If keys = [k0, .., kX] and d[k0, …, kX] = value, update_in returns a copy of the original dictionary with ‘value’ replaced by func(value).




    import toolz
      
      
    def func(value):
        return value//2
      
    nested_dict = {1:{11:111}, 2:{22:222}}
    print(toolz.dicttoolz.update_in(nested_dict, 
           [1, 11], func))

    
    

    Output –

    {1: {11: 55}, 2: {22: 222}}
    
  • valfilter(predicate, d[, factory]) – Filter items in dictionary by value.




    import toolz
      
      
    def func(value):
        return 4<len(value)<7
      
    d = {0: 'python', 1: 'julia', 3: 'java', 5: 'javascript'}
    print(toolz.dicttoolz.valfilter(func, d))

    
    

    Output –

    {0: 'python', 1: 'julia'}
    
  • valmap(func, d[, factory]) – Apply function to values of dictionary.




    import toolz
      
      
    def func(value):
        return ''.join(reversed(value))
      
    d = {0: 'python', 1: 'julia', 3: 'java', 5: 'javascript'}
    print(toolz.dicttoolz.valmap(func, d))

    
    

    Output –

    {0: 'nohtyp', 1: 'ailuj', 3: 'avaj', 5: 'tpircsavaj'}
    

functoolz

Functions –

  • apply(*func_and_args, **kwargs) – It simply applies a function and returns the result.




    import toolz
      
      
    def double(n):
        return n + n
      
    print(toolz.functoolz.apply(double, 2))

    
    

    Output –

    4
    
  • complement(func) – As its name suggests, it converts returns the logical complement of the input provided.




    import toolz
      
      
    def is_mulitple_of_5(n):
        return n % 5 == 0
      
    not_multiple_of_5 = toolz.functoolz.complement(is_mulitple_of_5)
      
    print(is_mulitple_of_5(10))
    print(not_multiple_of_5(10))

    
    

    Output –

    True
    False
    
  • compose(*funcs) – It returns a function that applies other functions in sequence. Functions are applied from right to left. If no arguments are provided, the identity function (f(x) = x) is returned.




    import toolz
      
      
    def func(n):
        return n + n
      
    def square(n):
        return n * n
      
    x = toolz.functoolz.compose(func, square)(3)
    print(x)

    
    

    Output –

    18
    
  • compose_left(*funcs) – It returns a function that applies other functions in sequence. Functions are applied from left to right. If no arguments are provided, the identity function (f(x) = x) is returned.




    import toolz
      
      
    def func(n):
        return n + n
      
    def square(n):
        return n * n
      
    x = toolz.functoolz.compose_left(func, square)(3)
    print(x)

    
    

    Output –

    36
    
  • flip – Call the function with the arguments in reverse order.




    import toolz
      
      
    def mod(a, b):
        return a % b
      
    print('7 % 3 :', toolz.functoolz.flip(mod, 3, 7))

    
    

    Output –

    7 % 3 : 1
    
  • identity(x) – Identity function, simply returns x.




    import toolz
      
      
    print(toolz.functoolz.identity(6))

    
    

    Output –

    6
    
  • pipe(data, *funcs) – Pipe a value through a sequence of functions. It is equivalent to compose_left(*funcs)




    import toolz
      
      
    print(toolz.functoolz.pipe(3, double, square))

    
    

    Output –

    36
    
  • thread_first(val, *forms) – Thread value through a sequence of functions/forms.




    import toolz
      
      
    def mod(a, b):
        return a % b
      
    def double(n):
        return n + n
      
    print(toolz.functoolz.thread_first(3, (mod, 2), double))

    
    

    Output –

    2
    
  • thread_last(val, *forms) – Thread value through a sequence of functions/forms.




    import toolz
      
      
    def mod(a, b):
        return a % b
      
    def double(n):
        return n + n
      
    print(toolz.functoolz.thread_last(3, (mod, 2), double))

    
    

    Output –

    4
    

itertoolz

Functions –

  • accumulate(binop, seq[, initial]) – This is similar to ‘reduce’ function. It repeatedly applies a function to a sequence accumulating results.




    import toolz
    from operator import add
      
    print(list(toolz.itertoolz.accumulate(add, [1, 2, 3, 4])))

    
    

    Output –

    [1, 3, 6, 10]
    
  • concat(seqs) – It concatenates two or more iterables.




    import toolz
      
    print(list(toolz.itertoolz.concat([[1], 
                                      ['a'], 
                                      [2, 3, 4]])))

    
    

    Output –

    [1, 'a', 2, 3, 4]
    
  • cons(item, seq) – It adds ‘item’ in the beginning of sequence. It is equivalent to insert(0, item).




    import toolz
      
      
    print(list(toolz.itertoolz.cons(1, ['a', 'b'])))

    
    

    Output –

    [1, 'a', 'b']
    
  • diff(*seqs, **kwargs) – It compares the elements at every index in both iterables and returns the list of differing pairs.




    import toolz
      
      
    print(list(toolz.itertoolz.diff([1, 2, 3], [2, 2, 4])))

    
    

    Output –

    [(1, 2), (3, 4)]
    
  • drop(n, seq) – It drops the first n elements of sequence and returns the new sequence.




    import toolz
      
    print(list(toolz.itertoolz.drop(3, [2, 3, 2, 6, 4, 7])))

    
    

    Output –

    [6, 4, 7]
    
  • frequencies(seq) – It returns a dictionary with elements and their count in sequence. It is equivalent to collections.Counter.




    import toolz
      
    print(toolz.itertoolz.frequencies(['c',
                                       'b',
                                       'c'
                                       'b'
                                       'd'
                                       'e'
                                       'h'
                                       'h',
                                       'b']))

    
    

    Output –

    {'c': 2, 'b': 3, 'd': 1, 'e': 1, 'h': 2}
    
  • groupby(func, seq) – It returns a dictionary after grouping the sequence elements according to func.




    import toolz
      
    print(toolz.itertoolz.groupby(len
                                  ['Lazyroar', 'for', 'Lazyroar']))

    
    

    Output –

    {5: ['Lazyroar', 'Lazyroar'], 3: ['for']}
    
  • isdistinct(seq) – It returns True if all elements in the sequence are distinct, else False.




    import toolz
      
    print(toolz.itertoolz.isdistinct('Lazyroar'))

    
    

    Output –

    False
    
  • isiterable(x) – It returns True if x is an iterable, else False.



  • print(toolz.itertoolz.isiterable([10]))

    
    
Output - True
  • interleave(seqs) – It interleaves the sequences, i.e. concatenates the sequences index-wise.




    import toolz
      
      
    print(list(toolz.itertoolz.interleave([[10, 20], 
                                           [5, 8, 11]])))

    
    

    Output –

    [10, 5, 20, 8, 11]
    
  • topk(k, seq[, key]) – It returns the top k largest elements of the sequence.




    import toolz
      
    print(list(toolz.itertoolz.topk(2,
                                    [10, 20, 5, 8, 11])))

    
    

    Output –

    [20, 11]
    
  • unique(seq[, key]) – It returns the distinct elements of sequence just like set(seq).




    import toolz
      
    print(list(toolz.itertoolz.unique([10,
                                       20,
                                       5,
                                       8
                                       10,
                                       20])))

    
    

    Output –

    [10, 20, 5, 8]
    
  • merge_sorted(*seqs, **kwargs) – It merges sorted iterables in such a way that the resulting collection is also sorted.




    import toolz
      
    print(list(toolz.itertoolz.merge_sorted([5, 10, 20], 
                                            [4, 12, 24])))

    
    

    Output –

    [4, 5, 10, 12, 20, 24]
    
  • mapcat(func, seqs) – It applies func to each sequence and concatenates the results.




    import toolz
      
    print(list(toolz.itertoolz.mapcat(lambda iter: [e * 2 for e in iter], 
                                      [[5, 10, 20], 
                                       [4, 12, 24]])))

    
    

    Output –

    [10, 20, 40, 8, 24, 48]
    
  • remove(predicate, seq) – It returns those elements from sequence for which predicate is False. It is complement function of filter.




    import toolz
      
    print(list(toolz.itertoolz.remove(lambda x: x % 2 == 0,
                                      [5, 21, 4, 12, 24])))

    
    

    Output –

    [5, 21]
    

    recipes

    Functions –

    • countby(key, seq) – Count elements of a collection by a key function.




      import toolz
        
        
      def iseven(n):
          return n % 2 == 0
        
      print(toolz.recipes.countby(iseven, [12, 123, 1234]))

      
      

      Output –

      {True: 2, False: 1}
      
    • partitionby(func, seq) – Partition a sequence according to a given function.




      import toolz
        
        
      def iseven(n):
          return n % 2 == 0
        
      print(list(toolz.recipes.partitionby(iseven, 
                                           [12, 123,  
                                            31, 1234])))

      
      

      Output –

      [(12, ), (123, 31), (1234, )]
      

    sandbox

    Functions –

    • parallel.fold(binop, seq[, default, map, …] – Reduce without guarantee of ordered reduction.




      import toolz
        
      def sum(a, b):
          return a + b
        
      print(toolz.sandbox.parallel.fold(sum, [1, 2, 3, 4]))

      
      

      Output –

      10
    • core.unzip(seq) – Inverse of zip.




      import toolz
        
      l1, l2 = toolz.sandbox.core.unzip([(0, 1),
                                         (1, 2),
                                         (2, 3)])
        
      print(list(l1), list(l2))

      
      

      Output –

      [0, 1, 2] [1, 2, 3]
      

  • Dominic Rubhabha-Wardslaus
    Dominic Rubhabha-Wardslaushttp://wardslaus.com
    infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
    RELATED ARTICLES

    Most Popular

    Recent Comments