Saturday, January 4, 2025
Google search engine
HomeLanguagesDistribution of candies according to ages of students

Distribution of candies according to ages of students

Given two integer arrays ages and packs where ages store the ages of different students and an element of pack stores the number of candies that packet has (complete array represent the number of packets). The candies can be distributed among students such that: 

  1. Every student must get only one pack of candies.
  2. All students of the same age must get equal number of candies.
  3. A student which is older must get more candies than all the student who are younger than him.

The task is to determine whether it is possible to distribute candies in the described manner. If possible then print Yes else print No.

Examples: 

Input: ages[] = {5, 15, 10}, packs[] = {2, 2, 2, 3, 3, 4} 
Output: YES 
There are 3 students with age 5, 15 and 10.And there are 6 packets of candies containing 2, 2, 2, 3, 3, 4 candies respectively. 
We will give one packet containing 2 candies to the student of age 5, one packet containing 3 candies to student with age 10 and give the packet containing 4 candies to student age 15

Input: ages[] = {5, 5, 6, 7}, packs[] = {5, 4, 6, 6} 
Output: NO 

Approach: 

  • Make 2 frequency arrays, one which will store the number of students with a particular age and one which will store the number of packets with a particular amount of candies.
  • Then traverse the frequency array for ages starting from the youngest age and for every age in ascending try to find the candy packets that are greater than or equal to the number of students for the selected age (starting from the least number of candies a packet has)
  • If the above case fails then the answer is No else repeat the above steps until all the student have got the candies and print Yes in the end.

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check The validity of distribution
void check_distribution(int n, int k,
                        int age[], int candy[])
{
     
    // Storing the max age of all
    // students + 1
    int mxage = *(std::max_element(
        age, age + n)) + 1;
   
    // Storing the max candy + 1
    int mxcandy = *(std::max_element(
        candy, candy + k)) + 1;
               
    int fr1[mxage] = {0};
    int fr2[mxcandy] = {0};
   
    // Creating the frequency array of
    // the age of students
    for(int j = 0; j < n; j++)
    {
        fr1[age[j]] += 1;
    }
   
    // Creating the frequency array of the 
    // packets of candies
    for(int j = 0; j < k; j++)
    {
        fr2[candy[j]] += 1;
    }
   
    // Pointer to tell whether we have reached 
    // the end of candy frequency array
    k = 0;
   
    // Flag to tell if distribution
    // is possible or not
    bool Tf = true;
    for(int j = 0; j < mxage; j++)
    {
        if (fr1[j] == 0)
            continue;
   
        // Flag to tell if we can choose
        // some candy packets for the
        // students with age j
        bool flag = false;
         
        while (k < mxcandy)
        {
             
            // If the quantity of packets is
            // greater than or equal to the
            // number of students of age j,
            // then we can choose these 
            // packets for the students
            if (fr1[j] <= fr2[k])
            {
                flag = true;
                break;
            }
            k += 1;
        }
   
        // Start searching from k + 1
        // in next operation
        k = k + 1;
   
        // If we cannot choose any packets 
        // then the answer is NO
        if (flag == false)
        {
            Tf = false;
            break;
        }
    }
         
    if (Tf)
        cout << "YES" << endl;
    else
        cout << "NO" << endl;
}
 
// Driver code      
int main()
{
    int age[] = { 5, 15, 10 };
    int candy[] = { 2, 2, 2, 3, 3, 4 };
     
    int n = sizeof(age) / sizeof(age[0]);
    int k = sizeof(candy) / sizeof(candy[0]);
     
    check_distribution(n, k, age, candy);
 
    return 0;
}
 
// This code is contributed by divyeshrabadiya07


Java




// Java implementation of the approach
import java.util.*;
 
class Main
{
    // Function to check The validity of distribution
    public static void check_distribution(int n, int k,
                            int age[], int candy[])
    {
          
        // Storing the max age of all
        // students + 1
        int mxage = age[0];
        for(int i = 0; i < age.length; i++)
        {
            if(mxage < age[i])
            {
                mxage = age[i];
            }
        }
        
        // Storing the max candy + 1
        int mxcandy = candy[0];
        for(int i = 0; i < candy.length; i++)
        {
            if(mxcandy < candy[i])
            {
                mxcandy = candy[i];
            }
        }
          
        int fr1[] = new int[mxage + 1];
        Arrays.fill(fr1, 0);
        int fr2[] = new int[mxcandy + 1];
        Arrays.fill(fr2, 0);
         
        
        // Creating the frequency array of
        // the age of students
        for(int j = 0; j < n; j++)
        {
            fr1[age[j]] += 1;
        }
        
        // Creating the frequency array of the 
        // packets of candies
        for(int j = 0; j < k; j++)
        {
            fr2[candy[j]] += 1;
        }
        
        // Pointer to tell whether we have reached 
        // the end of candy frequency array
        k = 0;
        
        // Flag to tell if distribution
        // is possible or not
        boolean Tf = true;
        for(int j = 0; j < mxage; j++)
        {
            if (fr1[j] == 0)
                continue;
        
            // Flag to tell if we can choose
            // some candy packets for the
            // students with age j
            boolean flag = false;
              
            while (k < mxcandy)
            {
                  
                // If the quantity of packets is
                // greater than or equal to the
                // number of students of age j,
                // then we can choose these 
                // packets for the students
                if (fr1[j] <= fr2[k])
                {
                    flag = true;
                    break;
                }
                k += 1;
            }
        
            // Start searching from k + 1
            // in next operation
            k = k + 1;
        
            // If we cannot choose any packets 
            // then the answer is NO
            if (flag == false)
            {
                Tf = false;
                break;
            }
        }
              
        if (Tf)
            System.out.println("YES");
        else
            System.out.println("NO");
    }
   
  // Driver code
  public static void main(String[] args)
  {
    int age[] = { 5, 15, 10 };
    int candy[] = { 2, 2, 2, 3, 3, 4 };
    int n = age.length;
    int k = candy.length;
     
    check_distribution(n, k, age, candy);
  }
}
 
// This code is contributed by divyesh072019


Python3




# Python3 implementation of the approach
 
# Function to check The validity of distribution
def check_distribution(n, k, age, candy):
 
    # Storing the max age of all students + 1
    mxage = max(age)+1
 
    # Storing the max candy + 1
    mxcandy = max(candy)+1
    fr1 = [0] * mxage
    fr2 = [0] * mxcandy
 
    # creating the frequency array of the
    # age of students
    for j in range(n):
        fr1[age[j]] += 1
 
    # Creating the frequency array of the
    # packets of candies
    for j in range(k):
        fr2[candy[j]] += 1
 
    # pointer to tell whether we have reached
    # the end of candy frequency array
    k = 0
 
    # Flag to tell if distribution is possible or not
    Tf = True
    for j in range(mxage):
        if (fr1[j] == 0):
            continue
 
        # Flag to tell if we can choose some
        # candy packets for the students with age j
        flag = False
        while (k < mxcandy):
 
            # If the quantity of packets is greater 
            # than or equal to the number of students
            # of age j, then we can choose these
            # packets for the students
            if (fr1[j] <= fr2[k]):
                flag = True
                break
            k += 1
 
        # Start searching from k + 1 in next operation
        k = k + 1
 
        # If we cannot choose any packets
        # then the answer is NO
        if (flag == False):
            Tf = False
            break
    if (Tf):
        print("YES")
    else:
        print("NO")
 
# Driver code
age = [5, 15, 10]
candy = [2, 2, 2, 3, 3, 4]
n = len(age)
k = len(candy)
check_distribution(n, k, age, candy)


C#




// C# implementation of the approach
using System.IO;
using System;
class GFG
{
    // Function to check The validity of distribution
    static void check_distribution(int n,int k,
                                   int[] age,int[] candy)
    {
       
        // Storing the max age of all
        // students + 1
        int mxage = age[0];
        for(int i = 0; i < age.Length; i++)
        {
            if(mxage < age[i])
            {
                mxage = age[i];
            }
        }
         
        // Storing the max candy + 1
        int mxcandy = candy[0];
        for(int i = 0; i < candy.Length; i++)
        {
            if(mxcandy < candy[i])
            {
                mxcandy = candy[i];
            }
        }
         
        int[] fr1 = new int[mxage + 1];
        Array.Fill(fr1, 0);
        int[] fr2 = new int[mxcandy + 1];
        Array.Fill(fr2, 0);
         
        // Creating the frequency array of
        // the age of students
        for(int j = 0; j < n; j++)
        {
            fr1[age[j]] += 1;
        }
         
        // Creating the frequency array of the 
        // packets of candies
        for(int j = 0; j < k; j++)
        {
            fr2[candy[j]] += 1;
        }
         
        // Pointer to tell whether we have reached 
        // the end of candy frequency array
        k = 0;
         
        // Flag to tell if distribution
        // is possible or not
        bool Tf = true;
         
        for(int j = 0; j < mxage; j++)
        {
            if(fr1[j] == 0)
            {
                continue;
            }
             
            // Flag to tell if we can choose
            // some candy packets for the
            // students with age j
            bool flag = false;
             
            while (k < mxcandy)
            {
                   
                // If the quantity of packets is
                // greater than or equal to the
                // number of students of age j,
                // then we can choose these 
                // packets for the students
                if (fr1[j] <= fr2[k])
                {
                    flag = true;
                    break;
                }
                k += 1;
            }
             
            // Start searching from k + 1
            // in next operation
            k = k + 1;
             
            // If we cannot choose any packets 
            // then the answer is NO
            if (flag == false)
            {
                Tf = false;
                break;
            }
             
        }
         
        if(Tf)
        {
            Console.WriteLine("Yes");
        }
        else
        {
            Console.WriteLine("No");
        }
         
    }
     
    // Driver code
    static void Main()
    {
        int[] age = {5, 15, 10};
        int[] candy = { 2, 2, 2, 3, 3, 4 };
        int n = age.Length;
        int k = candy.Length;
         
        check_distribution(n, k, age, candy);
    }
}
 
// This code is contributed by avanitrachhadiya2155


Javascript




<script>
    // Javascript implementation of the approach
     
    // Function to check The validity of distribution
    function check_distribution(n, k, age, candy)
    {
        
        // Storing the max age of all
        // students + 1
        let mxage = age[0];
        for(let i = 0; i < age.length; i++)
        {
            if(mxage < age[i])
            {
                mxage = age[i];
            }
        }
          
        // Storing the max candy + 1
        let mxcandy = candy[0];
        for(let i = 0; i < candy.length; i++)
        {
            if(mxcandy < candy[i])
            {
                mxcandy = candy[i];
            }
        }
          
        let fr1 = new Array(mxage + 1);
        fr1.fill(0);
        let fr2 = new Array(mxcandy + 1);
        fr2.fill(0);
          
        // Creating the frequency array of
        // the age of students
        for(let j = 0; j < n; j++)
        {
            fr1[age[j]] += 1;
        }
          
        // Creating the frequency array of the
        // packets of candies
        for(let j = 0; j < k; j++)
        {
            fr2[candy[j]] += 1;
        }
          
        // Pointer to tell whether we have reached
        // the end of candy frequency array
        k = 0;
          
        // Flag to tell if distribution
        // is possible or not
        let Tf = true;
          
        for(let j = 0; j < mxage; j++)
        {
            if(fr1[j] == 0)
            {
                continue;
            }
              
            // Flag to tell if we can choose
            // some candy packets for the
            // students with age j
            let flag = false;
              
            while (k < mxcandy)
            {
                    
                // If the quantity of packets is
                // greater than or equal to the
                // number of students of age j,
                // then we can choose these
                // packets for the students
                if (fr1[j] <= fr2[k])
                {
                    flag = true;
                    break;
                }
                k += 1;
            }
              
            // Start searching from k + 1
            // in next operation
            k = k + 1;
              
            // If we cannot choose any packets
            // then the answer is NO
            if (flag == false)
            {
                Tf = false;
                break;
            }
              
        }
          
        if(Tf)
        {
            document.write("YES");
        }
        else
        {
            document.write("NO");
        }
          
    }
     
    let age = [5, 15, 10];
    let candy = [ 2, 2, 2, 3, 3, 4 ];
    let n = age.length;
    let k = candy.length;
 
    check_distribution(n, k, age, candy);
     
    // This code is contributed by suresh07.
</script>


Output: 

YES

 

Time Complexity: O(maximum(n, k, max(age)))

Space Complexity: O(max(age))

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments