Monday, November 18, 2024
Google search engine
HomeLanguagesRandomResizedCrop() Method in Python PyTorch

RandomResizedCrop() Method in Python PyTorch

In this article, we are going to discuss RandomResizedCrop() method in Pytorch using Python.

RandomResizedCrop() method

RandomResizedCrop() method of torchvision.transforms module is used to crop a random area of the image and resized this image to the given size. This method accepts both PIL Image and Tensor Image. The tensor image is a PyTorch tensor with [C, H, W] shape, where C represents a number of channels and  H, W represents height and width respectively. This method returns a randomly cropped image. 

Syntax:  torchvision.transforms.RandomResizedCrop(size, scale, ratio)

Parameters:

  • size: Desired crop size of the image.
  • scale: This parameter is used to define the upper and lower bounds for the random area.
  • ratio: This parameter is used to define upper and lower bounds for the random aspect ratio.

Return: This method will returns the randomly cropped image of given input size.

The below image is used for demonstration:

 

Example 1:

In this example, we are transforming the image with a height of 300 and a width of 600.

Python3




# import required libraries
import torch
import torchvision.transforms as transforms
from PIL import Image
  
# Read image
image = Image.open('pic.png')
  
# create an transform for crop the image
# 300px height and 600px wide
transform = transforms.RandomResizedCrop(size=(300, 600))
  
# use above created transform to crop
# the image
image_crop = transform(image)
  
# display result
image_crop.show()


Output:

RandomResizedCrop() Method in Python PyTorch

 

Example 2:

In this example, we crop an image at a random location with the expected scale of 0.2 to 0.8.

Python3




# import required libraries
import torch
import torchvision.transforms as transforms
from PIL import Image
  
# Read image
image = Image.open('a.png')
  
# create an transform for crop the image
transform = transforms.RandomResizedCrop(size=(300, 600), 
                                         scale=(0.2, 0.8))
  
# use above created transform to crop
# the image
image_crop = transform(image)
  
# display result
image_crop.show()


Output:

RandomResizedCrop() Method in Python PyTorch

 

Example 3:

In this example, we crop an image at a random location with the expected ratio of 0.5 to 1.08.

Python3




# import required libraries
import torch
import torchvision.transforms as transforms
from PIL import Image
  
# Read image
image = Image.open('a.png')
  
# create an transform for crop the image
transform = transforms.RandomResizedCrop(
    size=(300, 600), scale=(0.2, 0.8), ratio=(0.5, 1.08))
  
# use above created transform to crop
# the image
image_crop = transform(image)
  
# display result
image_crop.show()


Output:

RandomResizedCrop() Method in Python PyTorch

 

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments