This method is used to detect missing values for an array-like object. This function takes a scalar or array-like object and indicates whether values are missing (“NaN“ in numeric arrays, “None“ or “NaN“ in object arrays, “NaT“ in datetimelike).
Syntax : pandas.isna(obj)
Argument :
- obj : scalar or array-like, Object to check for null or missing values.
Below is the implementation of the above method with some examples :
Example 1 :
Python3
# importing package import numpy import pandas # string "deep" is not nan value print (pandas.isna( "deep" )) # numpy.nan represents a nan value print (pandas.isna(numpy.nan)) |
Output :
False True
Example 2 :
Python3
# importing package import numpy import pandas # create and view data array = numpy.array([[ 1 , numpy.nan, 3 ], [ 4 , 5 , numpy.nan]]) print (array) # numpy.nan represents a nan value print (pandas.isna(array)) |
Output :
[[ 1. nan 3.] [ 4. 5. nan]] [[False True False] [False False True]]