Saturday, December 28, 2024
Google search engine
HomeData Modelling & AI3-Way QuickSort (Dutch National Flag)

3-Way QuickSort (Dutch National Flag)

In simple QuickSort algorithm, we select an element as pivot, partition the array around a pivot and recur for subarrays on the left and right of the pivot. 
Consider an array which has many redundant elements. For example, {1, 4, 2, 4, 2, 4, 1, 2, 4, 1, 2, 2, 2, 2, 4, 1, 4, 4, 4}. If 4 is picked as a pivot in Simple Quick Sort, we fix only one 4 and recursively process remaining occurrences.
The idea of 3 way Quick Sort is to process all occurrences of the pivot and is based on Dutch National Flag algorithm. 

In 3 Way QuickSort, an array arr[l..r] is divided in 3 parts:
a) arr[l..i] elements less than pivot.
b) arr[i+1..j-1] elements equal to pivot.
c) arr[j..r] elements greater than pivot.

Below is the implementation of the above algorithm.

C++




// C++ program for 3-way quick sort
#include <bits/stdc++.h>
using namespace std;
 
/* This function partitions a[] in three parts
   a) a[l..i] contains all elements smaller than pivot
   b) a[i+1..j-1] contains all occurrences of pivot
   c) a[j..r] contains all elements greater than pivot */
void partition(int a[], int l, int r, int& i, int& j)
{
    i = l - 1, j = r;
    int p = l - 1, q = r;
    int v = a[r];
 
    while (true) {
        // From left, find the first element greater than
        // or equal to v. This loop will definitely
        // terminate as v is last element
        while (a[++i] < v)
            ;
 
        // From right, find the first element smaller than
        // or equal to v
        while (v < a[--j])
            if (j == l)
                break;
 
        // If i and j cross, then we are done
        if (i >= j)
            break;
 
        // Swap, so that smaller goes on left greater goes
        // on right
        swap(a[i], a[j]);
 
        // Move all same left occurrence of pivot to
        // beginning of array and keep count using p
        if (a[i] == v) {
            p++;
            swap(a[p], a[i]);
        }
 
        // Move all same right occurrence of pivot to end of
        // array and keep count using q
        if (a[j] == v) {
            q--;
            swap(a[j], a[q]);
        }
    }
 
    // Move pivot element to its correct index
    swap(a[i], a[r]);
 
    // Move all left same occurrences from beginning
    // to adjacent to arr[i]
    j = i - 1;
    for (int k = l; k < p; k++, j--)
        swap(a[k], a[j]);
 
    // Move all right same occurrences from end
    // to adjacent to arr[i]
    i = i + 1;
    for (int k = r - 1; k > q; k--, i++)
        swap(a[i], a[k]);
}
 
// 3-way partition based quick sort
void quicksort(int a[], int l, int r)
{
    if (r <= l)
        return;
 
    int i, j;
 
    // Note that i and j are passed as reference
    partition(a, l, r, i, j);
 
    // Recur
    quicksort(a, l, j);
    quicksort(a, i, r);
}
 
// A utility function to print an array
void printarr(int a[], int n)
{
    for (int i = 0; i < n; ++i)
        printf("%d  ", a[i]);
    printf("\n");
}
 
// Driver code
int main()
{
    int a[] = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 };
    int size = sizeof(a) / sizeof(int);
   
      // Function Call
    printarr(a, size);
    quicksort(a, 0, size - 1);
    printarr(a, size);
    return 0;
}


Java




// Java program for 3-way quick sort
import java.util.*;
class GFG
{
 
    static int i, j;
     
/* This function partitions a[] in three parts
   a) a[l..i] contains all elements smaller than pivot
   b) a[i+1..j-1] contains all occurrences of pivot
   c) a[j..r] contains all elements greater than pivot */
static void partition(int a[], int l, int r)
{
   
    i = l - 1; j = r;
    int p = l - 1, q = r;
    int v = a[r];
 
    while (true)
    {
       
        // From left, find the first element greater than
        // or equal to v. This loop will definitely
        // terminate as v is last element
        while (a[++i] < v)
            ;
 
        // From right, find the first element smaller than
        // or equal to v
        while (v < a[--j])
            if (j == l)
                break;
 
        // If i and j cross, then we are done
        if (i >= j)
            break;
 
        // Swap, so that smaller goes on left greater goes
        // on right
        int temp = a[i];
          a[i] = a[j];
          a[j] = temp;
 
        // Move all same left occurrence of pivot to
        // beginning of array and keep count using p
        if (a[i] == v) {
            p++;
            temp = a[i];
            a[i] = a[p];
            a[p] = temp;
 
        }
 
        // Move all same right occurrence of pivot to end of
        // array and keep count using q
        if (a[j] == v) {
            q--;
            temp = a[q];
            a[q] = a[j];
            a[j] = temp;
        }
    }
 
    // Move pivot element to its correct index
    int temp = a[i];
      a[i] = a[r];
      a[r] = temp;
   
    // Move all left same occurrences from beginning
    // to adjacent to arr[i]
    j = i - 1;
    for (int k = l; k < p; k++, j--)
    {
        temp = a[k];
          a[k] = a[j];
          a[j] = temp;
    }
   
    // Move all right same occurrences from end
    // to adjacent to arr[i]
    i = i + 1;
    for (int k = r - 1; k > q; k--, i++)
    {
        temp = a[i];
          a[i] = a[k];
          a[k] = temp;
    }
}
 
// 3-way partition based quick sort
static void quicksort(int a[], int l, int r)
{
    if (r <= l)
        return;
 
   i = 0; j = 0;
 
    // Note that i and j are passed as reference
    partition(a, l, r);
 
    // Recur
    quicksort(a, l, j);
    quicksort(a, i, r);
}
 
// A utility function to print an array
static void printarr(int a[], int n)
{
    for (int i = 0; i < n; ++i)
        System.out.printf("%d  ", a[i]);
    System.out.printf("\n");
}
 
// Driver code
public static void main(String[] args)
{
    int a[] = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 };
    int size = a.length;
   
      // Function Call
    printarr(a, size);
    quicksort(a, 0, size - 1);
    printarr(a, size);
}
}
 
// This code is contributed by Rajput-Ji


Python3




'''
This function partitions a[] in three parts
   a) a[first..start] contains all elements smaller than pivot
   b) a[start+1..mid-1] contains all occurrences of pivot
   c) a[mid..last] contains all elements greater than pivot
    
'''
def partition(arr, first, last, start, mid):
     
    pivot = arr[last]
    end = last
     
    # Iterate while mid is not greater than end.
    while (mid[0] <= end):
         
        # Inter Change position of element at the starting if it's value is less than pivot.
        if (arr[mid[0]] < pivot):
             
            arr[mid[0]], arr[start[0]] = arr[start[0]], arr[mid[0]]
             
            mid[0] = mid[0] + 1
            start[0] = start[0] + 1
             
        # Inter Change position of element at the end if it's value is greater than pivot.
        elif (arr[mid[0]] > pivot):
             
            arr[mid[0]], arr[end] = arr[end], arr[mid[0]]
             
            end = end - 1
             
        else:
            mid[0] = mid[0] + 1
 
# Function to sort the array elements in 3 cases
def quicksort(arr,first,last):
    # First case when an array contain only 1 element
    if (first >= last):
        return
     
    # Second case when an array contain only 2 elements
    if (last == first + 1):
         
        if (arr[first] > arr[last]):
             
            arr[first], arr[last] = arr[last], arr[first]
             
            return
 
    # Third case when an array contain more than 2 elements
    start = [first]
    mid = [first]
 
    # Function to partition the array.
    partition(arr, first, last, start, mid)
     
    # Recursively sort sublist containing elements that are less than the pivot.
    quicksort(arr, first, start[0] - 1)
 
    # Recursively sort sublist containing elements that are more than the pivot
    quicksort(arr, mid[0], last)
 
# Code Start from here
arr = [4,9,4,4,1,9,4,4,9,4,4,1,4]
 
# Call the quicksort function.
quicksort(arr,0,len(arr) - 1)
 
# print arr after sorting the elements
print(arr)


C#




// C# program for 3-way quick sort
using System;
 
class GFG {
    // A function which is used to swap values
    static void swap<T>(ref T lhs, ref T rhs)
    {
        T temp;
        temp = lhs;
        lhs = rhs;
        rhs = temp;
    }
    /* This function partitions a[] in three parts
       a) a[l..i] contains all elements smaller than pivot
       b) a[i+1..j-1] contains all occurrences of pivot
       c) a[j..r] contains all elements greater than pivot
     */
    public static void partition(int[] a, int l, int r,
                                 ref int i, ref int j)
    {
        i = l - 1;
        j = r;
        int p = l - 1, q = r;
        int v = a[r];
 
        while (true) {
            // From left, find the first element greater
            // than or equal to v. This loop will definitely
            // terminate as v is last element
            while (a[++i] < v)
                ;
 
            // From right, find the first element smaller
            // than or equal to v
            while (v < a[--j])
                if (j == l)
                    break;
 
            // If i and j cross, then we are done
            if (i >= j)
                break;
 
            // Swap, so that smaller goes on left greater
            // goes on right
            swap(ref a[i], ref a[j]);
 
            // Move all same left occurrence of pivot to
            // beginning of array and keep count using p
            if (a[i] == v) {
                p++;
                swap(ref a[p], ref a[i]);
            }
 
            // Move all same right occurrence of pivot to
            // end of array and keep count using q
            if (a[j] == v) {
                q--;
                swap(ref a[j], ref a[q]);
            }
        }
 
        // Move pivot element to its correct index
        swap(ref a[i], ref a[r]);
 
        // Move all left same occurrences from beginning
        // to adjacent to arr[i]
        j = i - 1;
        for (int k = l; k < p; k++, j--)
            swap(ref a[k], ref a[j]);
 
        // Move all right same occurrences from end
        // to adjacent to arr[i]
        i = i + 1;
        for (int k = r - 1; k > q; k--, i++)
            swap(ref a[i], ref a[k]);
    }
 
    // 3-way partition based quick sort
    public static void quicksort(int[] a, int l, int r)
    {
        if (r <= l)
            return;
 
        int i = 0, j = 0;
 
        // Note that i and j are passed as reference
        partition(a, l, r, ref i, ref j);
 
        // Recur
        quicksort(a, l, j);
        quicksort(a, i, r);
    }
 
    // A utility function to print an array
    public static void printarr(int[] a, int n)
    {
        for (int i = 0; i < n; ++i)
            Console.Write(a[i] + " ");
        Console.Write("\n");
    }
 
    // Driver code
    static void Main()
    {
        int[] a = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 };
        int size = a.Length;
         
          // Function Call
          printarr(a, size);
        quicksort(a, 0, size - 1);
        printarr(a, size);
    }
    // This code is contributed by DrRoot_
}


Javascript




<script>
// javascript program for 3-way quick sort
 
    var i, j;
 
    /*
     * This function partitions a in three parts a) a[l..i] contains all elements
     * smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c)
     * a[j..r] contains all elements greater than pivot
     */
    function partition(a , l , r) {
 
        i = l - 1;
        j = r;
        var p = l - 1, q = r;
        var v = a[r];
 
        while (true) {
 
            // From left, find the first element greater than
            // or equal to v. This loop will definitely
            // terminate as v is last element
            while (a[++i] < v)
                ;
 
            // From right, find the first element smaller than
            // or equal to v
            while (v < a[--j])
                if (j == l)
                    break;
 
            // If i and j cross, then we are done
            if (i >= j)
                break;
 
            // Swap, so that smaller goes on left greater goes
            // on right
            var temp = a[i];
            a[i] = a[j];
            a[j] = temp;
 
            // Move all same left occurrence of pivot to
            // beginning of array and keep count using p
            if (a[i] == v) {
                p++;
                temp = a[i];
                a[i] = a[p];
                a[p] = temp;
 
            }
 
            // Move all same right occurrence of pivot to end of
            // array and keep count using q
            if (a[j] == v) {
                q--;
                temp = a[q];
                a[q] = a[j];
                a[j] = temp;
            }
        }
 
        // Move pivot element to its correct index
        var temp = a[i];
        a[i] = a[r];
        a[r] = temp;
 
        // Move all left same occurrences from beginning
        // to adjacent to arr[i]
        j = i - 1;
        for (k = l; k < p; k++, j--) {
            temp = a[k];
            a[k] = a[j];
            a[j] = temp;
        }
 
        // Move all right same occurrences from end
        // to adjacent to arr[i]
        i = i + 1;
        for (k = r - 1; k > q; k--, i++) {
            temp = a[i];
            a[i] = a[k];
            a[k] = temp;
        }
    }
 
    // 3-way partition based quick sort
    function quicksort(a , l , r) {
        if (r <= l)
            return;
 
        i = 0;
        j = 0;
 
        // Note that i and j are passed as reference
        partition(a, l, r);
 
        // Recur
        quicksort(a, l, j);
        quicksort(a, i, r);
    }
 
    // A utility function to print an array
    function printarr(a , n) {
        for (i = 0; i < n; ++i)
            document.write(" "+ a[i]);
        document.write("<br/>");
    }
 
    // Driver code   
        var a = [ 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 ];
        var size = a.length;
 
        // Function Call
        printarr(a, size);
        quicksort(a, 0, size - 1);
        printarr(a, size);
// This code contributed by aashish1995
</script>


Output

4  9  4  4  1  9  4  4  9  4  4  1  4  
1  1  4  4  4  4  4  4  4  4  9  9  9  

Time Complexity: O(N * log(N))

Where ‘N’ is the number of elements in the given array/list

The average number of recursive calls made to the quicksort function is log N, and every time the function is called we are traversing the given array/list which requires O(N) time. Thus, the total time complexity is O(N * log (N)).

Space Complexity: O(log N)

where ‘N’ is the number of elements in the given array/list.

Thanks to Utkarsh for suggesting above implementation.

Another Implementation using Dutch National Flag Algorithm

C++




// C++ program for 3-way quick sort
#include <bits/stdc++.h>
using namespace std;
 
void swap(int* a, int* b)
{
    int temp = *a;
    *a = *b;
    *b = temp;
}
 
// A utility function to print an array
void printarr(int a[], int n)
{
    for (int i = 0; i < n; ++i)
        printf("%d ", a[i]);
    printf("\n");
}
 
/* This function partitions a[] in three parts
a) a[l..i] contains all elements smaller than pivot
b) a[i+1..j-1] contains all occurrences of pivot
c) a[j..r] contains all elements greater than pivot */
 
// It uses Dutch National Flag Algorithm
void partition(int a[], int low, int high, int& i, int& j)
{
    // To handle 2 elements
    if (high - low <= 1) {
        if (a[high] < a[low])
            swap(&a[high], &a[low]);
        i = low;
        j = high;
        return;
    }
 
    int mid = low;
    int pivot = a[high];
    while (mid <= high) {
        if (a[mid] < pivot)
            swap(&a[low++], &a[mid++]);
        else if (a[mid] == pivot)
            mid++;
        else if (a[mid] > pivot)
            swap(&a[mid], &a[high--]);
    }
 
    // update i and j
    i = low - 1;
    j = mid; // or high+1
}
 
// 3-way partition based quick sort
void quicksort(int a[], int low, int high)
{
    if (low >= high) // 1 or 0 elements
        return;
 
    int i, j;
 
    // Note that i and j are passed as reference
    partition(a, low, high, i, j);
 
    // Recur two halves
    quicksort(a, low, i);
    quicksort(a, j, high);
}
 
// Driver Code
int main()
{
    int a[] = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 };
    // int a[] = {4, 39, 54, 14, 31, 89, 44, 34, 59, 64, 64,
    // 11, 41}; int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
    // int a[] = {91, 82, 73, 64, 55, 46, 37, 28, 19, 10};
    // int a[] = {4, 9, 4, 4, 9, 1, 1, 1};
    int size = sizeof(a) / sizeof(int);
 
    // Function Call
    printarr(a, size);
    quicksort(a, 0, size - 1);
    printarr(a, size);
    return 0;
}


Java




// Java program for 3-way quick sort
import java.util.*;
class GFG
{
 
static void swap(int[] arr, int i, int j)
{
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}
 
    // A utility function to print an array
static void printarr(int a[], int n)
{
    for (int i = 0; i < n; ++i)
        System.out.printf("%d ", a[i]);
    System.out.printf("\n");
}
  
/* This function partitions a[] in three parts
a) a[l..i] contains all elements smaller than pivot
b) a[i+1..j-1] contains all occurrences of pivot
c) a[j..r] contains all elements greater than pivot */
  
// It uses Dutch National Flag Algorithm
static void partition(int a[], int low, int high, int i, int j)
{
    // To handle 2 elements
    if (high - low <= 1) {
        if (a[high] < a[low])
            swap(a, high, low);
        i = low;
        j = high;
        return;
    }
  
    int mid = low;
    int pivot = a[high];
    while (mid <= high) {
        if (a[mid] < pivot)
            swap(a, low++, mid++);
        else if (a[mid] == pivot)
            mid++;
        else if (a[mid] > pivot)
            swap(a, mid, high--);
    }
  
    // update i and j
    i = low - 1;
    j = mid; // or high+1
}
  
// 3-way partition based quick sort
static void quicksort(int a[], int low, int high)
{
    if (low >= high) // 1 or 0 elements
        return;
  
    int i=low, j=high;
  
    // Note that i and j are passed
    partition(a, low, high, i, j);
  
    // Recur two halves
    quicksort(a, low, i);
    quicksort(a, j, high);
}
  
// Driver Code
public static void main(String[] args)
{
    int a[] = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 };
    // int a[] = {4, 39, 54, 14, 31, 89, 44, 34, 59, 64, 64,
    // 11, 41}; int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
    // int a[] = {91, 82, 73, 64, 55, 46, 37, 28, 19, 10};
    // int a[] = {4, 9, 4, 4, 9, 1, 1, 1};
    int size = a.length;
  
    // Function Call
    printarr(a, size);
    quicksort(a, 0, size - 1);
    printarr(a, size);
}
}
 
// This code is contributed by Pushpesh Raj.


Python3




# python3 program for 3-way quick sort
   
# Function to find lexicographically minimum
def swap(a,i,j) :
    temp = a[i]
    a[i] = a[j]
    a[j] = temp
 
# A utility function to print an array   
def printarr(a, n) :
     
    for i in range (n) :
        print(a[i],end=' ')
     
    print("\n")
 
''' This function partitions a[] in three parts
a) a[l..i] contains all elements smaller than pivot
b) a[i+1..j-1] contains all occurrences of pivot
c) a[j..r] contains all elements greater than pivot '''
 
# It uses Dutch National Flag Algorithm
def partition(a, low, high, i, j) :
    # To handle 2 elements
    if high - low <= 1 :
        if a[high] < a[low] :
            swap(a,high, low)
        i = low
        j = high
        return
 
    mid = low; pivot = a[high];
    while mid <= high :
        if a[mid] < pivot :
            swap(a,low,mid)
            low+=1
            mid+=1
        elif a[mid] == pivot :
            mid+=1
        elif a[mid] > pivot :
            swap(a,mid,high)
            high-=1
 
    # update i and j
    i = low - 1
    j = mid # or high+1
 
# 3-way partition based quick sort   
def quickSort(a,low,high) :
     
    if low >= high : # 1 or 0 elements
        return
     
    i = low; j = high;
     
    # Note that i and j are passed as reference
    partition(a,low,high,i,j)
     
    # Recur two halves
    quickSort(a,low,i)
    quickSort(a,j,high)
   
# Driver code
if __name__ == "__main__" :
     
    a = [4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4]
     
    size = len(a)
     
    printarr(a,size)
     
    quickSort(a,0,size-1)
     
    printarr(a,size)
 
#this code is contributed by aditya942003patil


C#




// C# program for 3-way quick sort
using System;
 
class GFG {
    // A function which is used to swap values
    static void swap<T>(ref T lhs, ref T rhs)
    {
        T temp;
        temp = lhs;
        lhs = rhs;
        rhs = temp;
    }
 
    // A utility function to print an array
    public static void printarr(int[] a, int n)
    {
        for (int i = 0; i < n; ++i)
            Console.Write(a[i] + " ");
        Console.Write("\n");
    }
 
    /* This function partitions a[] in three parts
    a) a[l..i] contains all elements smaller than pivot
    b) a[i+1..j-1] contains all occurrences of pivot
    c) a[j..r] contains all elements greater than pivot */
 
    // It uses Dutch National Flag Algorithm
    public static void partition(int[] a, int low, int high,
                                 ref int i, ref int j)
    {
        // To handle 2 elements
        if (high - low <= 1) {
            if (a[high] < a[low])
                swap(ref a[high], ref a[low]);
            i = low;
            j = high;
            return;
        }
 
        int mid = low;
        int pivot = a[high];
        while (mid <= high) {
            if (a[mid] < pivot)
                swap(ref a[low++], ref a[mid++]);
            else if (a[mid] == pivot)
                mid++;
            else if (a[mid] > pivot)
                swap(ref a[mid], ref a[high--]);
        }
 
        // update i and j
        i = low - 1;
        j = mid; // or high+1
    }
 
    // 3-way partition based quick sort
    public static void quicksort(int[] a, int low, int high)
    {
        if (low >= high) // 1 or 0 elements
            return;
 
        int i = 0, j = 0;
 
        // Note that i and j are passed as reference
        partition(a, low, high, ref i, ref j);
 
        // Recur two halves
        quicksort(a, low, i);
        quicksort(a, j, high);
    }
 
    // Driver code
    static void Main()
    {
        int[] a = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 };
        // int[] a = {4, 39, 54, 14, 31, 89, 44, 34, 59, 64,
        // 64, 11, 41}; int[] a = {1, 2, 3, 4, 5, 6, 7, 8, 9,
        // 10}; int[] a = {91, 82, 73, 64, 55, 46, 37, 28,
        // 19, 10}; int[] a = {4, 9, 4, 4, 9, 1, 1, 1};
        int size = a.Length;
         
          // Function Call
        printarr(a, size);
        quicksort(a, 0, size - 1);
        printarr(a, size);
    }
    // This code is contributed by DrRoot_
}


Javascript




<script>
// Javascript program for 3-way quick sort
function swap(arr, i, j) {
    let temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}
 
// A utility function to print an array
function printarr(a, n) {
    for (let i = 0; i < n; ++i)
        document.write(a[i]);
    document.write("<br>");
}
 
/* This function partitions a[] in three parts
a) a[l..i] contains all elements smaller than pivot
b) a[i+1..j-1] contains all occurrences of pivot
c) a[j..r] contains all elements greater than pivot */
 
// It uses Dutch National Flag Algorithm
function partition(a, low, high, i, j) {
    // To handle 2 elements
    if (high - low <= 1) {
        if (a[high] < a[low])
            swap(a, high, low);
        i = low;
        j = high;
        return;
    }
 
    let mid = low;
    let pivot = a[high];
    while (mid <= high) {
        if (a[mid] < pivot)
            swap(a, low++, mid++);
        else if (a[mid] == pivot)
            mid++;
        else if (a[mid] > pivot)
            swap(a, mid, high--);
    }
 
    // update i and j
    i = low - 1;
    j = mid; // or high+1
}
 
// 3-way partition based quick sort
function quicksort(a, low, high) {
    if (low >= high) // 1 or 0 elements
        return;
 
    let i = low, j = high;
 
    // Note that i and j are passed
    partition(a, low, high, i, j);
 
    // Recur two halves
    quicksort(a, low, i);
    quicksort(a, j, high);
}
 
// Driver Code
let a = [4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4];
 
// let a[] = {4, 39, 54, 14, 31, 89, 44, 34, 59, 64, 64,
// 11, 41}; let a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
// let a[] = {91, 82, 73, 64, 55, 46, 37, 28, 19, 10};
// let a[] = {4, 9, 4, 4, 9, 1, 1, 1};
let size = a.length;
 
// Function Call
printarr(a, size);
quicksort(a, 0, size - 1);
printarr(a, size);
 
// This code is contributed by gfgking
 
</script>


Output

4 9 4 4 1 9 4 4 9 4 4 1 4 
1 1 4 4 4 4 4 4 4 4 9 9 9 

Time Complexity: O(N2) The time complexity for this code is O(N*log(N)) in the average and best-case scenarios, and O(N^2) in the worst-case scenario.

Space Complexity: O(log N)
Thanks Aditya Goel for this implementation.
Reference: 
http://algs4.cs.princeton.edu/lectures/23DemoPartitioning.pdf 
http://www.sorting-algorithms.com/quick-sort-3-way
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments