Friday, November 15, 2024
Google search engine
HomeData Modelling & AITraining Your PyTorch Model Using Components and Pipelines in Azure ML

Training Your PyTorch Model Using Components and Pipelines in Azure ML

By Beatriz Stollnitz, Principal Cloud Advocate at Microsoft

Step 1: Train and test your PyTorch model locally

"""Tests the model."""

import argparse
import logging

import mlflow
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

from common import DATA_DIR, MODEL_DIR
from utils_train_nn import evaluate


def load_test_data(data_dir: str, batch_size: int) -> DataLoader[torch.Tensor]:
    """
    Returns a DataLoader object that wraps test data.
    """
    test_data = datasets.FashionMNIST(data_dir,
                                      train=False,
                                      download=True,
                                      transform=ToTensor())
    test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True)

    return test_loader


def test(data_dir: str, model_dir: str, device: str) -> None:
    """
    Tests the model on test data.
    """
    batch_size = 64
    loss_fn = nn.CrossEntropyLoss()
    test_dataloader = load_test_data(data_dir, batch_size)
    model = mlflow.pytorch.load_model(model_uri=model_dir)

    (test_loss, test_accuracy) = evaluate(device, test_dataloader, model,
                                          loss_fn)

    mlflow.log_param("test_loss", test_loss)
    mlflow.log_param("test_accuracy", test_accuracy)
    logging.info("Test loss: %f", test_loss)
    logging.info("Test accuracy: %f", test_accuracy)


def main() -> None:
    logging.basicConfig(level=logging.INFO)

    parser = argparse.ArgumentParser()
    parser.add_argument("--data_dir", dest="data_dir", default=DATA_DIR)
    parser.add_argument("--model_dir", dest="model_dir", default=MODEL_DIR)
    args = parser.parse_args()
    logging.info("input parameters: %s", vars(args))

    device = "cuda" if torch.cuda.is_available() else "cpu"

    test(**vars(args), device=device)


if __name__ == "__main__":
    main()

Step 2: Train your model in the cloud

"""Creates and runs an Azure ML pipeline."""

import logging
from pathlib import Path

from azure.ai.ml import MLClient, Input, Output
from azure.ai.ml.constants import AssetTypes
from azure.ai.ml.dsl import pipeline
from azure.ai.ml.entities import (AmlCompute, CommandComponent, Data,
                                  Environment, Model)
from azure.identity import DefaultAzureCredential

from common import MODEL_NAME

COMPUTE_NAME = "cluster-cpu"
DATA_NAME = "data-fashion-mnist"
DATA_PATH = Path(Path(__file__).parent.parent, "data")
COMPONENT_TRAIN_NAME = "component_pipeline_sdk_train"
COMPONENT_TEST_NAME = "component_pipeline_sdk_test"
COMPONENT_CODE = Path(Path(__file__).parent.parent, "src")
ENVIRONMENT_NAME = "environment-pipeline-sdk"
CONDA_PATH = Path(Path(__file__).parent, "conda.yml")
EXPERIMENT_NAME = "aml_pipeline_sdk"
DOWNLOADED_MODEL_PATH = Path(Path(__file__).parent.parent)


def main() -> None:
    logging.basicConfig(level=logging.INFO)
    credential = DefaultAzureCredential()
    ml_client = MLClient.from_config(credential=credential)

    # Create the compute cluster.
    cluster_cpu = AmlCompute(
        name=COMPUTE_NAME,
        type="amlcompute",
        size="Standard_DS4_v2",
        location="westus",
        min_instances=0,
        max_instances=4,
    )
    ml_client.begin_create_or_update(cluster_cpu)

    # Create the data set.
    dataset = Data(
        name=DATA_NAME,
        description="Fashion MNIST data set",
        path=DATA_PATH.as_posix(),
        type=AssetTypes.URI_FOLDER,
    )
    registered_dataset = ml_client.data.create_or_update(dataset)

    # Create environment for components. We won't register it.
    environment = Environment(name=ENVIRONMENT_NAME,
                              image="mcr.microsoft.com/azureml/" +
                              "openmpi4.1.0-ubuntu20.04:latest",
                              conda_file=CONDA_PATH)

    # Create the components.
    train_component = CommandComponent(
        name=COMPONENT_TRAIN_NAME,
        inputs=dict(data_dir=Input(type="uri_folder"),),
        outputs=dict(model_dir=Output(type="mlflow_model")),
        environment=environment,
        code=COMPONENT_CODE.as_posix(),
        command="python train.py --data_dir ${{inputs.data_dir}} " +
        "--model_dir ${{outputs.model_dir}}",
    )

    test_component = CommandComponent(
        name=COMPONENT_TEST_NAME,
        inputs=dict(data_dir=Input(type="uri_folder"),
                    model_dir=Input(type="mlflow_model")),
        environment=environment,
        code=COMPONENT_CODE.as_posix(),
        command="python test.py --model_dir ${{inputs.model_dir}}")

    registered_train_component = ml_client.components.create_or_update(
        train_component)

    registered_test_component = ml_client.components.create_or_update(
        test_component)

    # Create and submit pipeline.
    @pipeline(experiment_name=EXPERIMENT_NAME, default_compute=COMPUTE_NAME)
    def pipeline_func(data_dir: Input) -> dict[str, str]:
        train_job = registered_train_component(data_dir=data_dir)
        # Ignoring pylint because "test_job" shows up in the Studio UI.
        test_job = registered_test_component(  # pylint: disable=unused-variable
            data_dir=data_dir,
            model_dir=train_job.outputs.model_dir)

        return {
            "model_dir": train_job.outputs.model_dir,
        }

    pipeline_job = pipeline_func(
        data_dir=Input(type="uri_folder", path=registered_dataset.id))

    pipeline_job = ml_client.jobs.create_or_update(pipeline_job)
    ml_client.jobs.stream(pipeline_job.name)

    # Create the model.
    model_path = f"azureml://jobs/{pipeline_job.name}/outputs/model_dir"
    model = Model(name=MODEL_NAME,
                  path=model_path,
                  type=AssetTypes.MLFLOW_MODEL)
    registered_model = ml_client.models.create_or_update(model)

    # Download the model (this is optional).
    ml_client.models.download(name=MODEL_NAME,
                              download_path=DOWNLOADED_MODEL_PATH,
                              version=registered_model.version)


if __name__ == "__main__":
    main()

Additional Resources

Train a machine learning model with Azure Machine Learning – Training | Microsoft Learn

Train models in Azure Machine Learning with the CLI (v2) – Training | Microsoft Learn

Optimize model training in Azure Machine Learning – Training | Microsoft Learn

Part 1: Training and Deploying Your PyTorch Model in the Cloud with Azure ML

Article originally posted here. Reposted with permission.

RELATED ARTICLES

Most Popular

Recent Comments