Monday, November 18, 2024
Google search engine
HomeLanguagesDynamic ProgrammingLongest Decreasing Subsequence

Longest Decreasing Subsequence

Given an array of N integers, find the length of the longest subsequence of a given sequence such that all elements of the subsequence are sorted in strictly decreasing order. 
Examples:  

Input: arr[] = [15, 27, 14, 38, 63, 55, 46, 65, 85] 
Output:
Explanation: The longest decreasing subsequence is {63, 55, 46} 
Input: arr[] = {50, 3, 10, 7, 40, 80} 
Output:
Explanation: The longest decreasing subsequence is {50, 10, 7} 

The problem can be solved using Dynamic Programming
Optimal Substructure: 
Let arr[0…n-1] be the input array and lds[i] be the length of the LDS ending at index i such that arr[i] is the last element of the LDS. 
Then, lds[i] can be recursively written as: 

lds[i] = 1 + max(lds[j]) where i > j > 0 and arr[j] > arr[i] or 
lds[i] = 1, if no such j exists.

To find the LDS for a given array, we need to return max(lds[i]) where n > i > 0.  

C++




// CPP program to find the length of the
// longest decreasing subsequence
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns the length
// of the longest decreasing subsequence
int lds(int arr[], int n)
{
    int lds[n];
    int i, j, max = 0;
 
    // Initialize LDS with 1 for all index
    // The minimum LDS starting with any
    // element is always 1
    for (i = 0; i < n; i++)
        lds[i] = 1;
 
    // Compute LDS from every index
    // in bottom up manner
    for (i = 1; i < n; i++)
        for (j = 0; j < i; j++)
            if (arr[i] < arr[j] && lds[i] < lds[j] + 1)
                lds[i] = lds[j] + 1;
 
    // Select the maximum
    // of all the LDS values
    for (i = 0; i < n; i++)
        if (max < lds[i])
            max = lds[i];
 
    // returns the length of the LDS
    return max;
}
// Driver Code
int main()
{
    int arr[] = { 15, 27, 14, 38, 63, 55, 46, 65, 85 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << "Length of LDS is " << lds(arr, n);
    return 0;
}


Java




// Java program to find the
// length of the longest
// decreasing subsequence
import java.io.*;
 
class GFG
{
 
// Function that returns the
// length of the longest
// decreasing subsequence
static int lds(int arr[], int n)
{
    int lds[] = new int[n];
    int i, j, max = 0;
 
    // Initialize LDS with 1
    // for all index. The minimum
    // LDS starting with any
    // element is always 1
    for (i = 0; i < n; i++)
        lds[i] = 1;
 
    // Compute LDS from every
    // index in bottom up manner
    for (i = 1; i < n; i++)
        for (j = 0; j < i; j++)
            if (arr[i] < arr[j] &&
                         lds[i] < lds[j] + 1)
                lds[i] = lds[j] + 1;
 
    // Select the maximum
    // of all the LDS values
    for (i = 0; i < n; i++)
        if (max < lds[i])
            max = lds[i];
 
    // returns the length
    // of the LDS
    return max;
}
// Driver Code
public static void main (String[] args)
{
    int arr[] = { 15, 27, 14, 38,
                  63, 55, 46, 65, 85 };
    int n = arr.length;
    System.out.print("Length of LDS is " +
                             lds(arr, n));
}
}
 
// This code is contributed by anuj_67.


Python 3




# Python 3 program to find the length of
# the longest decreasing subsequence
 
# Function that returns the length
# of the longest decreasing subsequence
def lds(arr, n):
 
    lds = [0] * n
    max = 0
 
    # Initialize LDS with 1 for all index
    # The minimum LDS starting with any
    # element is always 1
    for i in range(n):
        lds[i] = 1
 
    # Compute LDS from every index
    # in bottom up manner
    for i in range(1, n):
        for j in range(i):
            if (arr[i] < arr[j] and
                lds[i] < lds[j] + 1):
                lds[i] = lds[j] + 1
 
    # Select the maximum
    # of all the LDS values
    for i in range(n):
        if (max < lds[i]):
            max = lds[i]
 
    # returns the length of the LDS
    return max
 
# Driver Code
if __name__ == "__main__":
     
    arr = [ 15, 27, 14, 38,
            63, 55, 46, 65, 85 ]
    n = len(arr)
    print("Length of LDS is", lds(arr, n))
 
# This code is contributed by ita_c


C#




// C# program to find the
// length of the longest
// decreasing subsequence
using System;
 
class GFG
{
 
// Function that returns the
// length of the longest
// decreasing subsequence
static int lds(int []arr, int n)
{
    int []lds = new int[n];
    int i, j, max = 0;
 
    // Initialize LDS with 1
    // for all index. The minimum
    // LDS starting with any
    // element is always 1
    for (i = 0; i < n; i++)
        lds[i] = 1;
 
    // Compute LDS from every
    // index in bottom up manner
    for (i = 1; i < n; i++)
        for (j = 0; j < i; j++)
            if (arr[i] < arr[j] &&
                        lds[i] < lds[j] + 1)
                lds[i] = lds[j] + 1;
 
    // Select the maximum
    // of all the LDS values
    for (i = 0; i < n; i++)
        if (max < lds[i])
            max = lds[i];
 
    // returns the length
    // of the LDS
    return max;
}
// Driver Code
public static void Main ()
{
    int []arr = { 15, 27, 14, 38,
                63, 55, 46, 65, 85 };
    int n = arr.Length;
    Console.Write("Length of LDS is " +
                          lds(arr, n));
}
}
 
// This code is contributed by anuj_67.


PHP




<?php
// PHP program to find the
// length of the longest
// decreasing subsequence
 
 
// Function that returns the
// length of the longest
// decreasing subsequence
function lds($arr, $n)
{
    $lds = array();
    $i; $j; $max = 0;
 
    // Initialize LDS with 1
    // for all index The minimum
    // LDS starting with any
    // element is always 1
    for ($i = 0; $i < $n; $i++)
        $lds[$i] = 1;
 
    // Compute LDS from every
    // index in bottom up manner
    for ($i = 1; $i < $n; $i++)
        for ($j = 0; $j < $i; $j++)
            if ($arr[$i] < $arr[$j] and
                $lds[$i] < $lds[$j] + 1)
                {
                    $lds[$i] = $lds[$j] + 1;
                }
 
    // Select the maximum
    // of all the LDS values
    for ($i = 0; $i < $n; $i++)
        if ($max < $lds[$i])
            $max = $lds[$i];
 
    // returns the length
    // of the LDS
    return $max;
}
 
// Driver Code
$arr = array(15, 27, 14, 38, 63,
             55, 46, 65, 85);
$n = count($arr);
echo "Length of LDS is " ,
            lds($arr, $n);
 
// This code is contributed by anuj_67.
?>


Javascript




<script>
// Javascript program to find the
// length of the longest
// decreasing subsequence
     
    // Function that returns the
// length of the longest
// decreasing subsequence
    function lds(arr,n)
    {
        let lds = new Array(n);
    let i, j, max = 0;
   
    // Initialize LDS with 1
    // for all index. The minimum
    // LDS starting with any
    // element is always 1
    for (i = 0; i < n; i++)
        lds[i] = 1;
   
    // Compute LDS from every
    // index in bottom up manner
    for (i = 1; i < n; i++)
        for (j = 0; j < i; j++)
            if (arr[i] < arr[j] &&
                         lds[i] < lds[j] + 1)
                lds[i] = lds[j] + 1;
   
    // Select the maximum
    // of all the LDS values
    for (i = 0; i < n; i++)
        if (max < lds[i])
            max = lds[i];
   
    // returns the length
    // of the LDS
    return max;
    }
     
    // Driver Code
    let arr=[15, 27, 14, 38,
                  63, 55, 46, 65, 85 ];
     
    let n = arr.length;
    document.write("Length of LDS is " +
                             lds(arr, n));
     
     
    // This code is contributed by rag2127
</script>


Output : 

Length of LDS is 3

 

Time Complexity: O(n2
Auxiliary Space: O(n)
Related Article: https://www.geeksforgeeks.org/longest-increasing-subsequence/

Longest Decreasing Subsequence in O(n*log(n)) :

Another approach to finding the Longest Decreasing Subsequence is using the Longest Increasing Subsequence approach in n*log(n) complexity. Here is the link to find the details of the approach with O(n*log(n)) complexity https://www.geeksforgeeks.org/longest-monotonically-increasing-subsequence-size-n-log-n/.

We can observe that the length of the Longest Decreasing Subsequence of any array is same as the length of the Longest Increasing Subsequence of that array if we multiply all elements by -1.

For example:

arr[] = [15, 27, 14, 38, 63, 55, 46, 65, 85] 
then the length of longest decreasing subsequence of this array is same as length of longest increasing subsequence of arr[]=[-15, -27, -14, -38, -63, -55, -46, -65, -85]

In both cases the length is 3.

Steps to solve this problem:

1. Check if array is zero than return zero.

2. Declare a vector tail of array size.

3. Declare a variable length=1.

4. Initialize tail[0]=v[0].

5. Iterate through i=1 till size of array:

    *Initialize auto b=tail.begin and e=tail.begin+length.

    *Initialize auto it to lower bound of v[i].

    *Check if it is equal to tail.begin+length than tail[length++]=v[i].

    *Else update value at it =v[i].

6. Return length.

Below is the code of the above approach.

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to find longest Longest Increasing Subsequence Length
int LongestIncreasingSubsequenceLength(vector<int>& v)
{
    if (v.size() == 0) // boundary case
        return 0;
 
    vector<int> tail(v.size(), 0);
    int length = 1; // always points empty slot in tail
 
    tail[0] = v[0];
 
    for (int i = 1; i < v.size(); i++) {
 
        // Do binary search for the element in
        // the range from begin to begin + length
        auto b = tail.begin(), e = tail.begin() + length;
        auto it = lower_bound(b, e, v[i]);
 
        // If not present change the tail element to v[i]
        if (it == tail.begin() + length)
            tail[length++] = v[i];
        else
            *it = v[i];
    }
 
    return length;
}
 
int main()
{
    vector<int> v{ 15, 27, 14, 38, 63, 55, 46, 65, 85 };
    int n=v.size();
    // Making all elements negative as
    // Longest Decreasing Subsequence of any array is
    // same as longest Increasing Subsequence
    // of negative values of that array.
    for(int i=0;i<n;i++)
    {
        v[i]=-1*v[i];
    }
    cout
        << "Length of Longest Decreasing Subsequence is "
        << LongestIncreasingSubsequenceLength(v);
    return 0;
}
 
 
// This code is contributed by Pushpesh Raj.


Java




// Java code for above approach
import java.io.*;
import java.lang.Math;
import java.util.*;
 
class LIS {
    // Function to find longest Longest Increasing Subsequence Length
    static int LongestIncreasingSubsequenceLength(int v[])
    {
        if (v.length == 0) // boundary case
            return 0;
 
        int[] tail = new int[v.length];
        int length = 1; // always points empty slot in tail
        tail[0] = v[0];
 
        for (int i = 1; i < v.length; i++) {
 
            if (v[i] > tail[length - 1]) {
                // v[i] extends the largest subsequence
                tail[length++] = v[i];
            }
            else {
                // v[i] will extend a subsequence and
                // discard older subsequence
 
                // find the largest value just smaller than
                // v[i] in tail
 
                // to find that value do binary search for
                // the v[i] in the range from begin to 0 +
                // length
                int idx = Arrays.binarySearch(
                    tail, 0, length - 1, v[i]);
 
                // binarySearch in java returns negative
                // value if searched element is not found in
                // array
 
                // this negative value stores the
                // appropriate place where the element is
                // supposed to be stored
                if (idx < 0)
                    idx = -1 * idx - 1;
 
                // replacing the existing subsequence with
                // new end value
                tail[idx] = v[i];
            }
        }
        return length;
    }
 
    // Driver program to test above function
    public static void main(String[] args)
    {
        int v[] = { 2, 5, 3, 7, 11, 8, 10, 13, 6 };
        int n=v.length;
        // Making all elements negative as
        // Longest Decreasing Subsequence of any array is
        // same as longest Increasing Subsequence
        // of negative values of that array.
        for(int i=0;i<n;i++)
        {
            v[i]=-1*v[i];
        }
        System.out.println(
            "Length of Longest Decreasing Subsequence is "
            + LongestIncreasingSubsequenceLength(v));
    }
}
 
// This code is contributed by Aman Kumar


Python3




from bisect import bisect_left
 
# Function to find longest Longest Increasing Subsequence Length
def LongestIncreasingSubsequenceLength(v):
    n = len(v)
    if n == 0: # boundary case
        return 0
 
    tail = [0] * n # vector to store the tail elements
    length = 1 # always points empty slot in tail
    tail[0] = v[0]
 
    for i in range(1, n):
       
        # Do binary search for the element in the range from begin to begin + length
        j = bisect_left(tail, v[i], 0, length)
 
        # If not present change the tail element to v[i]
        if j == length:
            tail[length] = v[i]
            length += 1
        else:
            tail[j] = v[i]
 
    return length
 
v = [15, 27, 14, 38, 63, 55, 46, 65, 85]
v = [-x for x in v] # Making all elements negative
 
print("Length of Longest Decreasing Subsequence is", LongestIncreasingSubsequenceLength(v))
 
# This code is contributed by unstoppablepandu.


C#




using System;
using System.Linq;
 
class LIS {
    // Function to find longest Longest Increasing
    // Subsequence Length
    static int LongestIncreasingSubsequenceLength(int[] v)
    {
        if (v.Length == 0) // boundary case
            return 0;
 
        int[] tail = new int[v.Length];
        int length = 1; // always points empty slot in tail
        tail[0] = v[0];
 
        for (int i = 1; i < v.Length; i++) {
            if (v[i] > tail[length - 1]) {
                // v[i] extends the largest subsequence
                tail[length++] = v[i];
            }
            else {
                // v[i] will extend a subsequence and
                // discard older subsequence
 
                // find the largest value just smaller than
                // v[i] in tail
 
                // to find that value do binary search for
                // the v[i] in the range from begin to 0 +
                // length
                int idx = Array.BinarySearch(
                    tail, 0, length - 1, v[i]);
 
                // binarySearch in C# returns negative
                // value if searched element is not found in
                // array
 
                // this negative value stores the
                // appropriate place where the element is
                // supposed to be stored
                if (idx < 0)
                    idx = ~idx;
 
                // replacing the existing subsequence with
                // new end value
                tail[idx] = v[i];
            }
        }
        return length;
    }
 
    // Driver program to test above function
    public static void Main(string[] args)
    {
        int[] v = { 2, 5, 3, 7, 11, 8, 10, 13, 6 };
        int n = v.Length;
        // Making all elements negative as
        // Longest Decreasing Subsequence of any array is
        // same as longest Increasing Subsequence
        // of negative values of that array.
        for (int i = 0; i < n; i++) {
            v[i] = -1 * v[i];
        }
        Console.WriteLine(
            "Length of Longest Decreasing Subsequence is "
            + LongestIncreasingSubsequenceLength(v));
    }
}


Javascript




//JavaScript program to implement above approach.
function LongestIncreasingSubsequenceLength(v) {
    if (v.length === 0) { // boundary case
        return 0;
    }
 
    const tail = new Array(v.length).fill(0);
    let length = 1; // always points empty slot in tail
 
    tail[0] = v[0];
 
    for (let i = 1; i < v.length; i++) {
        // Do binary search for the element in
        // the range from begin to begin + length
        let b = 0, e = length;
        let mid;
        while (b < e) {
            mid = Math.floor((b + e) / 2);
            if (tail[mid] < v[i]) {
                b = mid + 1;
            } else {
                e = mid;
            }
        }
 
        // If not present change the tail element to v[i]
        if (b === length) {
            tail[length++] = v[i];
        } else {
            tail[b] = v[i];
        }
    }
 
    return length;
}
 
let v = [15, 27, 14, 38, 63, 55, 46, 65, 85];
let n = v.length;
 
// Making all elements negative as
// Longest Decreasing Subsequence of any array is
// same as longest Increasing Subsequence
// of negative values of that array.
for (let i = 0; i < n; i++) {
    v[i] = -v[i];
}
console.log("Length of Longest Decreasing Subsequence is " +
    LongestIncreasingSubsequenceLength(v));


Output

Length of Longest Decreasing Subsequence is 3

Time Complexity: O(n*logn)
Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments