Given two integers N and K, the task is to find the total number of ways of representing N as the sum of positive integers in the range [1, K], where each integer can be chosen multiple times.
Examples:
Input: N = 8, K = 2
Output: 5
Explanation: All possible ways of representing N as sum of positive integers less than or equal to K are:
- {1, 1, 1, 1, 1, 1, 1, 1}, the sum is 8.
- {2, 1, 1, 1, 1, 1, 1}, the sum is 8.
- {2, 2, 1, 1, 1, 1}, the sum is 8.
- 2, 2, 2, 1, 1}, the sum is 8.
- {2, 2, 2, 2}}, the sum is 8.
Therefore, the total number of ways is 5.
Input: N = 2, K = 2
Output: 2
Naive Approach: The simplest approach to solve the given problem is to generate all possible combinations of choosing integers over the range [1, K] and count those combinations whose sum is N.
Implementaion :
C++
//C++ program for above approach #include <bits/stdc++.h> using namespace std; // Function that return Ways to sum to N using // Natural Numbers up to K with repetitions allowed int NumberOfways( int N, int K) { // Base case if (N == 0) return 1; if (N < 0 || K <= 0) return 0; // including and not including K in sum return NumberOfways(N - K, K) + NumberOfways(N, K - 1); } // Driver code int main() { int N = 8; int K = 2; // function call cout << NumberOfways(N, K) << endl; return 0; } // this code is contributed by bhardwajji |
Java
import java.util.*; class Main { // Function that return Ways to sum to N using // Natural Numbers up to K with repetitions allowed public static int NumberOfways( int N, int K) { // Base case if (N == 0 ) return 1 ; if (N < 0 || K <= 0 ) return 0 ; // including and not including K in sum return NumberOfways(N - K, K) + NumberOfways(N, K - 1 ); } // Driver code public static void main(String[] args) { int N = 8 ; int K = 2 ; // function call System.out.println(NumberOfways(N, K)); } } |
Python3
# Function that returns the number of ways to sum # to N using natural numbers up to K with repetitions allowed def number_of_ways(N, K): # Base case if N = = 0 : return 1 if N < 0 or K < = 0 : return 0 # Including and not including K in sum return number_of_ways(N - K, K) + number_of_ways(N, K - 1 ) # Driver code if __name__ = = '__main__' : N = 8 K = 2 # Function call print (number_of_ways(N, K)) |
Javascript
// Function that return Ways to sum to N using // Natural Numbers up to K with repetitions allowed function numberOfWays(N, K) { // Base case if (N == 0) return 1; if (N < 0 || K <= 0) return 0; // including and not including K in sum return numberOfWays(N - K, K) + numberOfWays(N, K - 1); } // Driver code let N = 8; let K = 2; // function call console.log(numberOfWays(N, K)); |
C#
using System; class MainClass { // Function that return Ways to sum to N using // Natural Numbers up to K with repetitions allowed static int NumberOfWays( int N, int K) { // Base case if (N == 0) return 1; if (N < 0 || K <= 0) return 0; // including and not including K in sum return NumberOfWays(N - K, K) + NumberOfWays(N, K - 1); } // Driver code static void Main() { int N = 8; int K = 2; // function call Console.WriteLine(NumberOfWays(N, K)); } } // This code is contributed by user_dtewbxkn77n |
5
Time Complexity: O(KN)
Auxiliary Space: O(1)
Efficient Approach: The above approach has Overlapping Subproblems and an Optimal Substructure. Hence, in order to optimize, Dynamic Programming is needed to be performed based on the following observations:
- Considering dp[i] stores the total number of ways for representing i as the sum of integers lying in the range [1, K], then the transition of states can be defined as:
- For i in the range [1, K] and for every j in the range [1, N]
- The value of dp[j] is equal to (dp[j]+ dp[j – i]), for all j ? i.
Follow the steps below to solve the problem:
- Initialize an array, say dp[], with all elements as 0, to store all the recursive states.
- Initialize dp[0] as 1.
- Now, iterate over the range [1, K] using a variable i and perform the following steps:
- Iterate over the range [1, N], using a variable j, and update the value of dp[j] as dp[j]+ dp[j – i], if j ? i.
- After completing the above steps, print the value of dp[N] as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the total number of // ways to represent N as the sum of // integers over the range [1, K] int NumberOfways( int N, int K) { // Initialize a list vector< int > dp(N + 1, 0); // Update dp[0] to 1 dp[0] = 1; // Iterate over the range [1, K + 1] for ( int row = 1; row < K + 1; row++) { // Iterate over the range [1, N + 1] for ( int col = 1; col < N + 1; col++) { // If col is greater // than or equal to row if (col >= row) // Update current // dp[col] state dp[col] = dp[col] + dp[col - row]; } } // Return the total number of ways return (dp[N]); } // Driver Code int main() { int N = 8; int K = 2; cout << (NumberOfways(N, K)); } // This code is contributed by mohit kumar 29. |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find the total number of // ways to represent N as the sum of // integers over the range [1, K] static int NumberOfways( int N, int K) { // Initialize a list int [] dp = new int [N + 1 ]; // Update dp[0] to 1 dp[ 0 ] = 1 ; // Iterate over the range [1, K + 1] for ( int row = 1 ; row < K + 1 ; row++) { // Iterate over the range [1, N + 1] for ( int col = 1 ; col < N + 1 ; col++) { // If col is greater // than or equal to row if (col >= row) // Update current // dp[col] state dp[col] = dp[col] + dp[col - row]; } } // Return the total number of ways return (dp[N]); } // Driver code public static void main(String[] args) { // Given inputs int N = 8 ; int K = 2 ; System.out.println(NumberOfways(N, K)); } } // This code is contributed by offbeat |
Python
# Python program for the above approach # Function to find the total number of # ways to represent N as the sum of # integers over the range [1, K] def NumberOfways(N, K): # Initialize a list dp = [ 0 ] * (N + 1 ) # Update dp[0] to 1 dp[ 0 ] = 1 # Iterate over the range [1, K + 1] for row in range ( 1 , K + 1 ): # Iterate over the range [1, N + 1] for col in range ( 1 , N + 1 ): # If col is greater # than or equal to row if (col > = row): # Update current # dp[col] state dp[col] = dp[col] + dp[col - row] # Return the total number of ways return (dp[N]) # Driver Code N = 8 K = 2 print (NumberOfways(N, K)) |
Javascript
<script> // Javascript implementation for the above approach // Function to find the total number of // ways to represent N as the sum of // integers over the range [1, K] function NumberOfways(N, K) { // Initialize a list let dp = Array.from({length: N +1}, (_, i) => 0); // Update dp[0] to 1 dp[0] = 1; // Iterate over the range [1, K + 1] for (let row = 1; row < K + 1; row++) { // Iterate over the range [1, N + 1] for (let col = 1; col < N + 1; col++) { // If col is greater // than or equal to row if (col >= row) // Update current // dp[col] state dp[col] = dp[col] + dp[col - row]; } } // Return the total number of ways return (dp[N]); } // Driver Code // Given inputs let N = 8; let K = 2; document.write(NumberOfways(N, K)); </script> |
C#
// C# program for the above approach using System; class GFG { // Function to find the total number of // ways to represent N as the sum of // integers over the range [1, K] static int NumberOfways( int N, int K) { // Initialize a list int [] dp = new int [(N + 1)]; // Update dp[0] to 1 dp[0] = 1; // Iterate over the range [1, K + 1] for ( int row = 1; row < K + 1; row++) { // Iterate over the range [1, N + 1] for ( int col = 1; col < N + 1; col++) { // If col is greater // than or equal to row if (col >= row) // Update current // dp[col] state dp[col] = dp[col] + dp[col - row]; } } // Return the total number of ways return (dp[N]); } // Driver Code public static void Main() { int N = 8; int K = 2; Console.WriteLine(NumberOfways(N, K)); } } // This code is contributed by ukasp. |
5
Time Complexity: O(N * K)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!