Consider a devotee wishing to give offerings to temples along with a mountain range. The temples are located in a row at different heights. Each temple should receive at least one offer. If two adjacent temples are at different altitudes, then the temple that is higher up should receive more offerings than the one that is lower down. If two adjacent temples are at the same height, then their offerings relative to each other do not matter. Given the number of temples and the heights of the temples in order, find the minimum number of offerings to bring.
Examples:
Input : 3
1 2 2
Output : 4
All temples must receive at-least one offering.
Now, the second temple is at a higher altitude
compared to the first one. Thus it receives one
extra offering.
The second temple and third temple are at the
same height, so we do not need to modify the
offerings. Offerings given are therefore: 1, 2,
1 giving a total of 4.
Input : 6
1 4 3 6 2 1
Output : 10
We can distribute the offerings in the following
way, 1, 2, 1, 3, 2, 1. The second temple has to
receive more offerings than the first due to its
height being higher. The fourth must receive more
than the fifth, which in turn must receive more
than the sixth. Thus the total becomes 10.
We notice that each temple can either be above, below or at the same level as the temple next to it. The offerings required at each temple are equal to the maximum length of the chain of temples at a lower height as shown in the image.
Naive Approach: To follow the given rule, a temple must be offered at least x+1 where x is the maximum of the following two.
Number of temples on left in increasing order.
Number of temples on right in increasing order.
A naive method of solving this problem would be for each temple, go to the left until altitude increases, and do the same for the right.
C++
// Program to find minimum total offerings required
#include <iostream>
usingnamespacestd;
// Returns minimum offerings required
intofferingNumber(intn, inttempleHeight[])
{
intsum = 0; // Initialize result
// Go through all temples one by one
for(inti = 0; i < n; ++i)
{
// Go to left while height keeps increasing
intleft = 0, right = 0;
for(intj = i - 1; j >= 0; --j)
{
if(templeHeight[j] < templeHeight[j + 1])
++left;
else
break;
}
// Go to right while height keeps increasing
for(intj = i + 1; j < n; ++j)
{
if(templeHeight[j] < templeHeight[j - 1])
++right;
else
break;
}
// This temple should offer maximum of two
// values to follow the rule.
sum += max(right, left) + 1;
}
returnsum;
}
// Driver code
intmain()
{
intarr1[3] = {1, 2, 2};
cout << offeringNumber(3, arr1) << "\n";
intarr2[6] = {1, 4, 3, 6, 2, 1};
cout << offeringNumber(6, arr2) << "\n";
return0;
}
Java
// Program to find minimum
// total offerings required
importjava.io.*;
classGFG
{
// Returns minimum
// offerings required
staticintofferingNumber(intn,
inttempleHeight[])
{
intsum = 0; // Initialize result
// Go through all
// temples one by one
for(inti = 0; i < n; ++i)
{
// Go to left while
// height keeps increasing
intleft = 0, right = 0;
for(intj = i - 1; j >= 0; --j)
{
if(templeHeight[j] <
templeHeight[j + 1])
++left;
else
break;
}
// Go to right while
// height keeps increasing
for(intj = i + 1; j < n; ++j)
{
if(templeHeight[j] <
templeHeight[j - 1])
++right;
else
break;
}
// This temple should offer
// maximum of two values
// to follow the rule.
sum += Math.max(right, left) + 1;
}
returnsum;
}
// Driver code
publicstaticvoidmain (String[] args)
{
intarr1[] = {1, 2, 2};
System.out.println(offeringNumber(3, arr1));
intarr2[] = {1, 4, 3,
6, 2, 1};
System.out.println(offeringNumber(6, arr2));
}
}
// This code is contributed by akt_mit
Python3
# Program to find minimum total
# offerings required.
# Returns minimum offerings required
defofferingNumber(n, templeHeight):
sum=0# Initialize result
# Go through all temples one by one
fori inrange(n):
# Go to left while height
# keeps increasing
left =0
right =0
forj inrange(i -1, -1, -1):
if(templeHeight[j] < templeHeight[j +1]):
left +=1
else:
break
# Go to right while height
# keeps increasing
forj inrange(i +1, n):
if(templeHeight[j] < templeHeight[j -1]):
right +=1
else:
break
# This temple should offer maximum
# of two values to follow the rule.
sum+=max(right, left) +1
returnsum
# Driver Code
arr1 =[1, 2, 2]
print(offeringNumber(3, arr1))
arr2 =[1, 4, 3, 6, 2, 1]
print(offeringNumber(6, arr2))
# This code is contributed
# by sahilshelangia
C#
// Program to find minimum
// total offerings required
usingSystem;
classGFG
{
// Returns minimum
// offerings required
staticintofferingNumber(intn,
int[]templeHeight)
{
intsum = 0; // Initialize result
// Go through all
// temples one by one
for(inti = 0; i < n; ++i)
{
// Go to left while
// height keeps increasing
intleft = 0, right = 0;
for(intj = i - 1; j >= 0; --j)
{
if(templeHeight[j] <
templeHeight[j + 1])
++left;
else
break;
}
// Go to right while
// height keeps increasing
for(intj = i + 1; j < n; ++j)
{
if(templeHeight[j] <
templeHeight[j - 1])
++right;
else
break;
}
// This temple should offer
// maximum of two values
// to follow the rule.
sum += Math.Max(right, left) + 1;
}
returnsum;
}
// Driver code
staticpublicvoidMain ()
{
int[]arr1 = {1, 2, 2};
Console.WriteLine(offeringNumber(3, arr1));
int[]arr2 = {1, 4, 3,
6, 2, 1};
Console.WriteLine(offeringNumber(6, arr2));
}
}
// This code is contributed by aj_36
PHP
<?php
// Program to find minimum total offerings required
By using Dynamic Programming, we can improve the time complexity. In this method, we create a structure of length n which maintains the maximum decreasing chain to the left of each temple and the maximum decreasing chain to the right of each temple. We go through once from 0 to N setting the value of left for each temple. We then go from N to 0 setting the value of right for each temple. We then compare the two and pick the maximum for each temple.
C++
// C++ Program to find total offerings required
#include <iostream>
usingnamespacestd;
// To store count of increasing order temples
// on left and right (including current temple)
structTemple {
intL;
intR;
};
// Returns count of minimum offerings for
// n temples of given heights.
intofferingNumber(intn, inttempleHeight[])
{
// Initialize counts for all temples
Temple chainSize[n];
for(inti = 0; i < n; ++i) {
chainSize[i].L = -1;
chainSize[i].R = -1;
}
// Values corner temples
chainSize[0].L = 1;
chainSize[n - 1].R = 1;
// Filling left and right values using same
// values of previous(or next)
for(inti = 1; i < n; ++i) {
if(templeHeight[i - 1] < templeHeight[i])
chainSize[i].L = chainSize[i - 1].L + 1;
else
chainSize[i].L = 1;
}
for(inti = n - 2; i >= 0; --i) {
if(templeHeight[i + 1] < templeHeight[i])
chainSize[i].R = chainSize[i + 1].R + 1;
else
chainSize[i].R = 1;
}
// Computing max of left and right for all
// temples and returning sum.
intsum = 0;
for(inti = 0; i < n; ++i)
sum += max(chainSize[i].L, chainSize[i].R);
returnsum;
}
// Driver function
intmain()
{
intarr1[3] = { 1, 2, 2 };
cout << offeringNumber(3, arr1) << "\n";
intarr2[6] = { 1, 4, 3, 6, 2, 1 };
cout << offeringNumber(6, arr2) << "\n";
return0;
}
Java
// Java program to find total offerings required
importjava.util.*;
classGFG {
// To store count of increasing order temples
// on left and right (including current temple)
publicstaticclassTemple {
publicintL;
publicintR;
};
// Returns count of minimum offerings for
// n temples of given heights.
staticintofferingNumber(intn, int[] templeHeight)
{
// Initialize counts for all temples
Temple[] chainSize = newTemple[n];
for(inti = 0; i < n; ++i) {
chainSize[i] = newTemple();
chainSize[i].L = -1;
chainSize[i].R = -1;
}
// Values corner temples
chainSize[0].L = 1;
chainSize[n - 1].R = 1;
// Filling left and right values
// using same values of
// previous(or next)
for(inti = 1; i < n; ++i) {
if(templeHeight[i - 1] < templeHeight[i])
chainSize[i].L = chainSize[i - 1].L + 1;
else
chainSize[i].L = 1;
}
for(inti = n - 2; i >= 0; --i) {
if(templeHeight[i + 1] < templeHeight[i])
chainSize[i].R = chainSize[i + 1].R + 1;
else
chainSize[i].R = 1;
}
// Computing max of left and right for all
// temples and returning sum.
intsum = 0;
for(inti = 0; i < n; ++i)
sum += Math.max(chainSize[i].L, chainSize[i].R);
returnsum;
}
// Driver code
publicstaticvoidmain(String[] s)
{
int[] arr1 = { 1, 2, 2};
System.out.println(offeringNumber(3, arr1));
int[] arr2 = { 1, 4, 3, 6, 2, 1};
System.out.println(offeringNumber(6, arr2));
}
}
// This code is contributed by pratham76
Python3
# Python3 program to find temple
# offerings required
fromtyping importList
# To store count of increasing order temples
# on left and right (including current temple)
classTemple:
def__init__(self, l: int, r: int):
self.L =l
self.R =r
# Returns count of minimum offerings for
# n temples of given heights.
defofferingNumber(n: int,
templeHeight: List[int]) -> int:
# Initialize counts for all temples
chainSize =[0] *n
fori inrange(n):
chainSize[i] =Temple(-1, -1)
# Values corner temples
chainSize[0].L =1
chainSize[-1].R =1
# Filling left and right values
# using same values of previous(or next
fori inrange(1, n):
iftempleHeight[i -1] < templeHeight[i]:
chainSize[i].L =chainSize[i -1].L +1
else:
chainSize[i].L =1
fori inrange(n -2, -1, -1):
iftempleHeight[i +1] < templeHeight[i]:
chainSize[i].R =chainSize[i +1].R +1
else:
chainSize[i].R =1
# Computing max of left and right for all
# temples and returning sum
sm =0
fori inrange(n):
sm +=max(chainSize[i].L,
chainSize[i].R)
returnsm
# Driver code
if__name__ =='__main__':
arr1 =[1, 2, 2]
print(offeringNumber(3, arr1))
arr2 =[1, 4, 3, 6, 2, 1]
print(offeringNumber(6, arr2))
# This code is contributed by Rajat Srivastava
C#
// C# program to find total offerings required
usingSystem;
classGFG {
// To store count of increasing order temples
// on left and right (including current temple)
publicclassTemple {
publicintL;
publicintR;
};
// Returns count of minimum offerings for
// n temples of given heights.
staticintofferingNumber(intn, int[] templeHeight)
{
// Initialize counts for all temples
Temple[] chainSize = newTemple[n];
for(inti = 0; i < n; ++i) {
chainSize[i] = newTemple();
chainSize[i].L = -1;
chainSize[i].R = -1;
}
// Values corner temples
chainSize[0].L = 1;
chainSize[n - 1].R = 1;
// Filling left and right values
// using same values of
// previous(or next)
for(inti = 1; i < n; ++i) {
if(templeHeight[i - 1] < templeHeight[i])
chainSize[i].L = chainSize[i - 1].L + 1;
else
chainSize[i].L = 1;
}
for(inti = n - 2; i >= 0; --i) {
if(templeHeight[i + 1] < templeHeight[i])
chainSize[i].R = chainSize[i + 1].R + 1;
else
chainSize[i].R = 1;
}
// Computing max of left and right for all
// temples and returning sum.
intsum = 0;
for(inti = 0; i < n; ++i)
sum += Math.Max(chainSize[i].L, chainSize[i].R);
returnsum;
}
// Driver code
staticvoidMain()
{
int[] arr1 = { 1, 2, 2 };
Console.Write(offeringNumber(3, arr1) + "\n");
int[] arr2 = { 1, 4, 3, 6, 2, 1 };
Console.Write(offeringNumber(6, arr2) + "\n");
}
}
// This code is contributed by rutvik_56
Javascript
// Javascript code for the above approach
const offeringNumber = (n, templeHeight) => {
// Initialize counts for all temples
let chainSize = newArray(n);
for(let i = 0; i < n; ++i) {
chainSize[i] = { L: -1, R: -1 };
}
// Values corner temples
chainSize[0].L = 1;
chainSize[n - 1].R = 1;
// Filling left and right values using same
// values of previous(or next)
for(let i = 1; i < n; ++i) {
if(templeHeight[i - 1] < templeHeight[i])
chainSize[i].L = chainSize[i - 1].L + 1;
else
chainSize[i].L = 1;
}
for(let i = n - 2; i >= 0; --i) {
if(templeHeight[i + 1] < templeHeight[i])
chainSize[i].R = chainSize[i + 1].R + 1;
else
chainSize[i].R = 1;
}
// Computing max of left and right for all
// temples and returning sum.
let sum = 0;
for(let i = 0; i < n; ++i)
sum += Math.max(chainSize[i].L, chainSize[i].R);
returnsum;
}
// Driver function
let arr = [1,2,2]
console.log(offeringNumber(3, arr));
let arr1=[1, 4, 3, 6, 2, 1]
console.log(offeringNumber(6, arr1));
// This code is contributed by lokeshpotta20.
Output
4
10
Time Complexity: O(n) Auxiliary Space: O(n)
Greedy Approach:
If we somehow manage to make sure that the temple at higher mountain is getting more offerings then our problem is solved. For this we can make use of greedy (since we have to compare only the neighbors of current index). The approach is to do two traversals (in two directions), first one to make sure that the temple gets more offerings than the left temple (at higher position) and second one to make sure that the temple at higher position from the right gets more offerings.
C++
// C++ Program to find total offerings required
#include <iostream>
usingnamespacestd;
inttempleOfferings(intnums[], intn)
{
// to find the total offerings in both directions
intofferings[n];
// start off by giving one offering to the first
// temple
offerings[0] = 1;
// to make sure that the temple at ith position gets
// more offerings if it is at a greater height than
// the left one
for(inti = 1; i < n; i++)
{
if(nums[i] > nums[i - 1])
offerings[i] = offerings[i - 1] + 1;
else
offerings[i] = 1;
}
// to make sure that the temple at ith position gets
// more offerings if it is at a greater height than
This article is contributed by Aditya Kamath and improved by Vishal Jha. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!