Given a graph of N Nodes and E edges in form of {U, V, W} such that there exists an edge between U and V with weight W. You are given an integer K and source src and destination dst. The task is to find the cheapest cost path from given source to destination from K stops.
Examples:
Input: N = 3, edges = [[0, 1, 100], [1, 2, 100], [0, 2, 500]], src = 0, dst = 2, k = 1
Output: 200
Explanation:
The Cheapest Price is from City 0 to City 2. With just one stop, it just costs 200 which is our Output.
Input: N = 3, edges = [[0, 1, 100], [1, 2, 100], [0, 2, 500]], src = 0, dst = 2, k = 0
Output: 500
Method 1: Using Depth First Search
- Explore the current node and keep exploring its children.
- Use a map to store the visited node in pair with stops and distance as value.
- Break the recursion tree if the key is present in the map.
- Find the answer (minimum cost) for each recursion tree and return it.
Below is the implementation of our approach.
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Structure to implement hashing to // stores pairs in map struct pair_hash { template < class T1, class T2> std:: size_t operator()( const std::pair<T1, T2>& pair) const { return std::hash<T1>()(pair.first) ^ std::hash<T2>()(pair.second); } }; // DFS memoization vector<vector< int > > adjMatrix; typedef std::pair< int , int > pair1; unordered_map<pair1, int , pair_hash> mp; // Function to implement DFS Traversal long DFSUtility( int node, int stops, int dst, int cities) { // Base Case if (node == dst) return 0; if (stops < 0) { return INT_MAX; } pair< int , int > key(node, stops); // Find value with key in a map if (mp.find(key) != mp.end()) { return mp[key]; } long ans = INT_MAX; // Traverse adjacency matrix of // source node for ( int neighbour = 0; neighbour < cities; ++neighbour) { long weight = adjMatrix[node][neighbour]; if (weight > 0) { // Recursive DFS call for // child node long minVal = DFSUtility(neighbour, stops - 1, dst, cities); if (minVal + weight > 0) ans = min(ans, minVal + weight); } } mp[key] = ans; // Return ans return ans; } // Function to find the cheapest price // from given source to destination int findCheapestPrice( int cities, vector<vector< int > >& flights, int src, int dst, int stops) { // Resize Adjacency Matrix adjMatrix.resize(cities + 1, vector< int >(cities + 1, 0)); // Traverse flight[][] for ( auto item : flights) { // Create Adjacency Matrix adjMatrix[item[0]][item[1]] = item[2]; } // DFS Call to find shortest path long ans = DFSUtility(src, stops, dst, cities); // Return the cost return ans >= INT_MAX ? -1 : ( int )ans; ; } // Driver Code int main() { // Input flight : {Source, // Destination, Cost} vector<vector< int > > flights = { { 4, 1, 1 }, { 1, 2, 3 }, { 0, 3, 2 }, { 0, 4, 10 }, { 3, 1, 1 }, { 1, 4, 3 } }; // vec, n, stops, src, dst int stops = 2; int totalCities = 5; int sourceCity = 0; int destCity = 4; // Function Call long ans = findCheapestPrice( totalCities, flights, sourceCity, destCity, stops); cout << ans; return 0; } |
Java
// Java program for the above approach import java.util.HashMap; public class SingleS { // DFS memoization static int adjMatrix[][]; static HashMap< int [], Integer> mp = new HashMap< int [], Integer>(); // Function to implement DFS Traversal static int DFSUtility( int node, int stops, int dst, int cities) { // Base Case if (node == dst) return 0 ; if (stops < 0 ) return Integer.MAX_VALUE; int [] key = new int [] { node, stops }; // Find value with key in a map if (mp.containsKey(key)) return mp.get(mp); int ans = Integer.MAX_VALUE; // Traverse adjacency matrix of // source node for ( int neighbour = 0 ; neighbour < cities; ++neighbour) { int weight = adjMatrix[node][neighbour]; if (weight > 0 ) { // Recursive DFS call for // child node int minVal = DFSUtility( neighbour, stops - 1 , dst, cities); if (minVal + weight > 0 ) ans = Math.min(ans, minVal + weight); } mp.put(key, ans); } // Return ans return ans; } // Function to find the cheapest price // from given source to destination static int findCheapestPrice( int cities, int [][] flights, int src, int dst, int stops) { // Resize Adjacency Matrix adjMatrix = new int [cities + 1 ][cities + 1 ]; // Traverse flight[][] for ( int [] item : flights) { // Create Adjacency Matrix adjMatrix[item[ 0 ]][item[ 1 ]] = item[ 2 ]; } // DFS Call to find shortest path int ans = DFSUtility(src, stops, dst, cities); // Return the cost return ans >= Integer.MAX_VALUE ? - 1 : ans; } // Driver Code public static void main(String[] args) { // Input flight : :Source, // Destination, Cost int [][] flights = { { 4 , 1 , 1 }, { 1 , 2 , 3 }, { 0 , 3 , 2 }, { 0 , 4 , 10 }, { 3 , 1 , 1 }, { 1 , 4 , 3 } }; // vec, n, stops, src, dst int stops = 2 ; int totalCities = 5 ; int sourceCity = 0 ; int destCity = 4 ; // Function Call int ans = findCheapestPrice(totalCities, flights, sourceCity, destCity, stops); System.out.println(ans); } } // This code is contributed by Lovely Jain |
Python3
# Python3 program for the above approach # DFS memoization adjMatrix = [] mp = dict () # Function to implement DFS Traversal def DFSUtility(node, stops, dst, cities): # Base Case if (node = = dst): return 0 if (stops < 0 ) : return 1e9 key = (node, stops) # Find value with key in a map if key in mp: return mp[key] ans = 1e9 # Traverse adjacency matrix of # source node for neighbour in range (cities): weight = adjMatrix[node][neighbour] if (weight > 0 ) : # Recursive DFS call for # child node minVal = DFSUtility(neighbour, stops - 1 , dst, cities) if (minVal + weight > 0 ): ans = min (ans, minVal + weight) mp[key] = ans # Return ans return ans # Function to find the cheapest price # from given source to destination def findCheapestPrice(cities, flights, src, dst, stops): global adjMatrix # Resize Adjacency Matrix adjMatrix = [[ 0 ] * (cities + 1 ) for _ in range (cities + 1 )] # Traverse flight[][] for item in flights: # Create Adjacency Matrix adjMatrix[item[ 0 ]][item[ 1 ]] = item[ 2 ] # DFS Call to find shortest path ans = DFSUtility(src, stops, dst, cities) # Return the cost return - 1 if ans > = 1e9 else int (ans) # Driver Code if __name__ = = '__main__' : # Input flight : :Source, # Destination, Cost flights = [[ 4 , 1 , 1 ],[ 1 , 2 , 3 ] , [ 0 , 3 , 2 ] , [ 0 , 4 , 10 ] , [ 3 , 1 , 1 ] , [ 1 , 4 , 3 ]] # vec, n, stops, src, dst stops = 2 totalCities = 5 sourceCity = 0 destCity = 4 # Function Call ans = findCheapestPrice( totalCities, flights, sourceCity, destCity, stops) print (ans) |
C#
// C# program to implement above approach using System; using System.Collections; using System.Collections.Generic; class GFG { // DFS memoization static int [][] adjMatrix; static Dictionary< int [], int > mp = new Dictionary< int [], int >(); // Function to implement DFS Traversal static int DFSUtility( int node, int stops, int dst, int cities) { // Base Case if (node == dst){ return 0; } if (stops < 0){ return Int32.MaxValue; } int [] key = new int [] { node, stops }; // Find value with key in a map if (mp.ContainsKey(key)){ return mp[key]; } int ans = Int32.MaxValue; // Traverse adjacency matrix of // source node for ( int neighbour = 0 ; neighbour < cities ; ++neighbour) { int weight = adjMatrix[node][neighbour]; if (weight > 0) { // Recursive DFS call for // child node int minVal = DFSUtility(neighbour, stops - 1, dst, cities); if (minVal + weight > 0){ ans = Math.Min(ans, minVal + weight); } } if (!mp.ContainsKey(key)){ mp.Add(key, 0); } mp[key] = ans; } // Return ans return ans; } // Function to find the cheapest price // from given source to destination static int findCheapestPrice( int cities, int [][] flights, int src, int dst, int stops) { // Resize Adjacency Matrix adjMatrix = new int [cities + 1][]; for ( int i = 0 ; i <= cities ; i++){ adjMatrix[i] = new int [cities + 1]; } // Traverse flight[][] foreach ( int [] item in flights) { // Create Adjacency Matrix adjMatrix[item[0]][item[1]] = item[2]; } // DFS Call to find shortest path int ans = DFSUtility(src, stops, dst, cities); // Return the cost return ans >= Int32.MaxValue ? -1 : ans; } // Driver code public static void Main( string [] args){ // Input flight : :Source, // Destination, Cost int [][] flights = new int [][]{ new int []{ 4, 1, 1 }, new int []{ 1, 2, 3 }, new int []{ 0, 3, 2 }, new int []{ 0, 4, 10 }, new int []{ 3, 1, 1 }, new int []{ 1, 4, 3 } }; // vec, n, stops, src, dst int stops = 2; int totalCities = 5; int sourceCity = 0; int destCity = 4; // Function Call int ans = findCheapestPrice(totalCities, flights, sourceCity, destCity, stops); Console.WriteLine(ans); } } // This code is contributed by entertain2022. |
Javascript
const pair_hash = { // Function to implement hashing operator(pair) { return ( Math.hash(pair.first) ^ Math.hash(pair.second) ); } }; // DFS memoization let adjMatrix = []; let mp = new Map(); // Function to implement DFS Traversal function DFSUtility(node, stops, dst, cities) { // Base Case if (node === dst) return 0; if (stops < 0) return Number.MAX_SAFE_INTEGER; let key = new Map(); // Find value with key in a map if (mp.has(key)) return mp.get(key); let ans = Number.MAX_SAFE_INTEGER; // Traverse adjacency matrix of // source node for (let neighbour = 0; neighbour < cities; neighbour++) { let weight = adjMatrix[node][neighbour]; if (weight > 0) { // Recursive DFS call for // child node let minVal = DFSUtility(neighbour, stops - 1, dst, cities); if (minVal + weight > 0) ans = Math.min(ans, minVal + weight); } } mp.set(key, ans); // Return ans return ans; } // Function to find the cheapest price // from given source to destination function findCheapestPrice(cities, flights, src, dst, stops) { // Resize Adjacency Matrix adjMatrix.resize = cities + 1; for (let i = 0; i < cities + 1; i++) { adjMatrix[i] = Array(cities + 1).fill(0); } // Traverse flight[][] for (let item of flights) { // Create Adjacency Matrix adjMatrix[item[0]][item[1]] = item[2]; } // DFS Call to find shortest path let ans = DFSUtility(src, stops, dst, cities); // Return the cost return ans >= Number.MAX_SAFE_INTEGER ? -1 : ans; } // Driver Code // Input flight : {Source, // Destination, Cost} let flights = [ [4, 1, 1], [1, 2, 3], [0, 3, 2], [0, 4, 10], [3, 1, 1], [1, 4, 3], ]; // vec, n, stops, src, dst let stops = 2; let totalCities = 5; let sourceCity = 0; let destCity = 4; // Function Call let ans = findCheapestPrice( totalCities, flights, sourceCity, destCity, stops ); console.log(ans); // This code is contributed by ishankhandelwals. |
6
Time Complexity: O(V + E), where V is the number of nodes and E is the edges.
Auxiliary Space: O(V)
Method 2: Using Breadth-First Search
- The idea is to use Queue to perform BFS Traversal.
- Perform traversal from current node and insert root node in the queue.
- Traverse the queue and explore the current node and its siblings. Then insert the siblings of the node in the queue.
- While exploring each sibling and keep pushing the entries in the queue if the cost is less and update the minimum cost.
- Print the minimum cost after the above traversal.
Below is the implementation of our approach:
C++
// C++ program of the above approach #include <bits/stdc++.h> #include <iostream> #include <queue> #include <tuple> #include <unordered_map> using namespace std; // BSF Memoization typedef tuple< int , int , int > tupl; // Function to implement BFS int findCheapestPrice( int cities, vector<vector< int > >& flights, int src, int dst, int stops) { unordered_map< int , vector<pair< int , int > > > adjList; // Traverse flight[][] for ( auto flight : flights) { // Create Adjacency Matrix adjList[flight[0]].push_back( { flight[1], flight[2] }); } // < city, distancefromsource > pair queue<pair< int , int > > q; q.push({ src, 0 }); // Store the Result int srcDist = INT_MAX; // Traversing the Matrix while (!q.empty() && stops-- >= 0) { int qSize = q.size(); for ( int i = 0; i < qSize; i++) { pair< int , int > curr = q.front(); q.pop(); for ( auto next : adjList[curr.first]) { // If source distance is already // least the skip this iteration if (srcDist < curr.second + next.second) continue ; q.push({ next.first, curr.second + next.second }); if (dst == next.first) { srcDist = min( srcDist, curr.second + next.second); } } } } // Returning the Answer return srcDist == INT_MAX ? -1 : srcDist; } // Driver Code int main() { // Input flight : {Source, // Destination, Cost} vector<vector< int > > flights = { { 4, 1, 1 }, { 1, 2, 3 }, { 0, 3, 2 }, { 0, 4, 10 }, { 3, 1, 1 }, { 1, 4, 3 } }; // vec, n, stops, src, dst int stops = 2; int totalCities = 5; // Given source and destination int sourceCity = 0; int destCity = 4; // Function Call long ans = findCheapestPrice( totalCities, flights, sourceCity, destCity, stops); cout << ans; return 0; } |
Java
// Jaca program of the above approach import java.util.*; public class Main { // Driver Code public static void main(String[] args) { // Input flight : {Source, // Destination, Cost} int [][] flights = { { 4 , 1 , 1 }, { 1 , 2 , 3 }, { 0 , 3 , 2 }, { 0 , 4 , 10 }, { 3 , 1 , 1 }, { 1 , 4 , 3 } }; // vec, n, stops, src, dst int stops = 2 ; int totalCities = 5 ; // Given source and destination int sourceCity = 0 ; int destCity = 4 ; // Function Call long ans = findCheapestPrice(totalCities, flights, sourceCity, destCity, stops); System.out.println(ans); } public static long findCheapestPrice( int cities, int [][] flights, int src, int dst, int stops) { Map<Integer, List< int []> > adjList = new HashMap<>(); // Traverse flight[][] for ( int [] flight : flights) { // Create Adjacency Matrix adjList .computeIfAbsent(flight[ 0 ], k -> new ArrayList<>()) .add( new int [] { flight[ 1 ], flight[ 2 ] }); } // < city, distancefromsource > [] Queue< int []> q = new LinkedList<>(); q.offer( new int [] { src, 0 }); // Store the Result long srcDist = Integer.MAX_VALUE; // Traversing the Matrix while (!q.isEmpty() && stops-- >= 0 ) { int qSize = q.size(); for ( int i = 0 ; i < qSize; i++) { int [] curr = q.poll(); for ( int [] next : adjList.getOrDefault( curr[ 0 ], new ArrayList<>())) { // If source distance is already // least the skip this iteration if (srcDist < curr[ 1 ] + next[ 1 ]) continue ; q.offer( new int [] { next[ 0 ], curr[ 1 ] + next[ 1 ] }); if (dst == next[ 0 ]) srcDist = Math.min( srcDist, curr[ 1 ] + next[ 1 ]); } } } // Returning the Answer return srcDist == Integer.MAX_VALUE ? - 1 : srcDist; } } // This code is contributed by Tapesh(tapeshdua420) |
Python3
# Python3 program of the above approach from queue import Queue as Q # Function to implement BFS def findCheapestPrice(cities, flights, src, dst, stops): adjList = dict () # Traverse flight[][] for flight in flights : # Create Adjacency Matrix if flight[ 0 ] in adjList: adjList[flight[ 0 ]].append( (flight[ 1 ], flight[ 2 ])) else : adjList[flight[ 0 ]] = [(flight[ 1 ], flight[ 2 ])] q = Q() q.put((src, 0 )) # Store the Result srcDist = 1e9 # Traversing the Matrix while ( not q.empty() and stops > = 0 ) : stops - = 1 for i in range (q.qsize()) : curr = q.get() for nxt in adjList[curr[ 0 ]]: # If source distance is already # least the skip this iteration if (srcDist < curr[ 1 ] + nxt[ 1 ]): continue q.put((nxt[ 0 ],curr[ 1 ] + nxt[ 1 ])) if (dst = = nxt[ 0 ]): srcDist = min ( srcDist, curr[ 1 ] + nxt[ 1 ]) # Returning the Answer return - 1 if srcDist = = 1e9 else srcDist # Driver Code if __name__ = = '__main__' : # Input flight : :Source, # Destination, Cost flights = [[ 4 , 1 , 1 ],[ 1 , 2 , 3 ] , [ 0 , 3 , 2 ] , [ 0 , 4 , 10 ] , [ 3 , 1 , 1 ] , [ 1 , 4 , 3 ]] # vec, n, stops, src, dst stops = 2 totalCities = 5 # Given source and destination sourceCity = 0 destCity = 4 # Function Call ans = findCheapestPrice( totalCities, flights, sourceCity, destCity, stops) print (ans) |
C#
// C# program of the above approach using System; using System.Collections; using System.Collections.Generic; public class GFG { public static int findCheapestPrice( int n, int [, ] flights, int src, int dst, int K) { var adjList = new Dictionary< int , List<Tuple< int , int > > >(); // Traverse flight[][] for ( int i = 0; i < flights.GetLength(0); i++) { // Create Adjacency Matrix if (!adjList.ContainsKey(flights[i, 0])) { adjList.Add(flights[i, 0], new List<Tuple< int , int > >()); } adjList[flights[i, 0]].Add( Tuple.Create(flights[i, 1], flights[i, 2])); } // < city, distancefromsource > [] var q = new Queue<( int , int )>(); q.Enqueue((src, 0)); // Store the Result var srcDist = Int32.MaxValue; // Traversing the Matrix while (q.Count > 0 && K-- >= 0) { var qSize = q.Count; for ( var i = 0; i < qSize; i++) { var curr = q.Dequeue(); foreach ( var next in adjList[curr.Item1]) { // If source distance is already // least the skip this iteration if (srcDist < curr.Item2 + next.Item2) continue ; q.Enqueue((next.Item1, curr.Item2 + next.Item2)); if (dst == next.Item1) { srcDist = Math.Min( srcDist, curr.Item2 + next.Item2); } } } } // Returning the Answer return srcDist == Int32.MaxValue ? -1 : srcDist; } // Driver Code public static void Main( string [] args) { // Input flight : {Source, // Destination, Cost} int [, ] flights = new int [, ] { { 4, 1, 1 }, { 1, 2, 3 }, { 0, 3, 2 }, { 0, 4, 10 }, { 3, 1, 1 }, { 1, 4, 3 } }; // vec, n, stops, src, dst int stops = 2; int totalCities = 5; // Given source and destination int sourceCity = 0; int destCity = 4; // Function Call long ans = findCheapestPrice(totalCities, flights, sourceCity, destCity, stops); Console.WriteLine(ans); } } // This code is contributed by Tapesh(tapeshdua420) |
Javascript
function findCheapestPrice(cities, flights, src, dst, stops) { const adjList = new Map(); // Traverse flight[][] for (let i = 0; i < flights.length; i++) { const flight = flights[i]; // Create Adjacency Matrix const dest = flight[1]; const cost = flight[2]; const neighbors = adjList.get(flight[0]) || []; neighbors.push([dest, cost]); adjList.set(flight[0], neighbors); } // < city, distancefromsource > [] const q = []; q.push([src, 0]); // Store the Result let srcDist = Infinity; // Traversing the Matrix while (q.length > 0 && stops-- >= 0) { const qSize = q.length; for (let i = 0; i < qSize; i++) { const curr = q.shift(); const neighbors = adjList.get(curr[0]) || []; for (let j = 0; j < neighbors.length; j++) { const next = neighbors[j]; // If source distance is already // least the skip this iteration if (srcDist < curr[1] + next[1]) { continue ; } q.push([next[0], curr[1] + next[1]]); if (dst === next[0]) { srcDist = Math.min(srcDist, curr[1] + next[1]); } } } } // Returning the Answer return srcDist === Infinity ? -1 : srcDist; } // Driver Code const flights = [ [4, 1, 1], [1, 2, 3], [0, 3, 2], [0, 4, 10], [3, 1, 1], [1, 4, 3] ]; const stops = 2; const totalCities = 5; const sourceCity = 0; const destCity = 4; const ans = findCheapestPrice(totalCities, flights, sourceCity, destCity, stops); console.log(ans); |
6
Time Complexity: O(Stops* N * N) where N is the Product of Cities and Size in Queue
Auxiliary Space: O(N)
Method 3: Using Dijkstra Algorithm
- Update the distance of all the vertices from the source.
- The vertices that are not directly connected from the source are marked with infinity and vertices that are directly connected are updated with the correct distance.
- Start from the source, and extract next min vertices. This will ensure the minimum cost.
- Do Edge Relaxation at each step: D denotes Distance and w denotes weights
- If D[u] + w(u, z) < D[z] then
- D[z] = D[u] + w(u, z)
Here is the implementation of our approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> #include <tuple> using namespace std; typedef tuple< int , int , int > tupl; long findCheapestPrice( int cities, vector<vector< int > >& flights, int src, int dst, int stops) { // Adjacency Matrix vector<vector<pair< int , int > > > adjList(cities); // Traverse flight[][] for ( auto flight : flights) { // Create Adjacency Matrix adjList[flight[0]].push_back( { flight[1], flight[2] }); } // Implementing Priority Queue priority_queue<tupl, vector<tupl>, greater<tupl> > pq; tupl t = make_tuple(0, src, stops); pq.push(t); // While PQ is not empty while (!pq.empty()) { tupl t = pq.top(); pq.pop(); if (src == dst) return 0; int cost = get<0>(t); int current = get<1>(t); int stop = get<2>(t); if (current == dst) // Return the Answer return cost; if (stop >= 0) { for ( auto next : adjList[current]) { tupl t = make_tuple((cost + next.second), next.first, stop - 1); pq.push(t); } } } return -1; } int main() { // Input flight : {Source, // Destination, Cost} vector<vector< int > > flights = { { 4, 1, 1 }, { 1, 2, 3 }, { 0, 3, 2 }, { 0, 4, 10 }, { 3, 1, 1 }, { 1, 4, 3 } }; // vec, n, stops, src, dst int stops = 2; int totalCities = 5; // Given source and destination int sourceCity = 0; int destCity = 4; // Function Call long ans = findCheapestPrice( totalCities, flights, sourceCity, destCity, stops); cout << ans; return 0; } |
Java
// Java code import java.util.*; import java.util.stream.Collectors; public class Main { // Create a tuple class static class tupl implements Comparable<tupl> { int cost; int current; int stop; public tupl( int cost, int current, int stop) { this .cost = cost; this .current = current; this .stop = stop; } @Override public int compareTo(tupl o) { return this .cost - o.cost; } }; // Function to find the cheapest // price from source to destination // using at-most k stops static long findCheapestPrice( int cities, List<List<Integer> > flights, int src, int dst, int stops) { // Adjacency Matrix List<List< int []> > adjList = new ArrayList<>(); for ( int i = 0 ; i < cities; i++) adjList.add( new ArrayList<>()); // Traverse flight[][] for (List<Integer> flight : flights) { // Create Adjacency Matrix adjList.get(flight.get( 0 )) .add( new int [] { flight.get( 1 ), flight.get( 2 ) }); } // Implementing Priority Queue PriorityQueue<tupl> pq = new PriorityQueue<>(); tupl t = new tupl( 0 , src, stops); pq.add(t); // While PQ is not empty while (!pq.isEmpty()) { tupl t1 = pq.poll(); int cost = t1.cost; int current = t1.current; int stop = t1.stop; if (current == dst) // Return the Answer return cost; if (stop >= 0 ) { for ( int [] next : adjList.get(current)) { tupl t2 = new tupl((cost + next[ 1 ]), next[ 0 ], stop - 1 ); pq.add(t2); } } } return - 1 ; } // Driver Code public static void main(String[] args) { // Input flight : {Source, // Destination, Cost} List<List<Integer> > flights = Arrays.asList( Arrays.asList( 4 , 1 , 1 ), Arrays.asList( 1 , 2 , 3 ), Arrays.asList( 0 , 3 , 2 ), Arrays.asList( 0 , 4 , 10 ), Arrays.asList( 3 , 1 , 1 ), Arrays.asList( 1 , 4 , 3 )); // vec, n, stops, src, dst int stops = 2 ; int totalCities = 5 ; // Given source and destination int sourceCity = 0 ; int destCity = 4 ; // Function Call long ans = findCheapestPrice(totalCities, flights, sourceCity, destCity, stops); System.out.println(ans); } } |
Python3
# Python3 program for the above approach import heapq as hq def findCheapestPrice(cities, flights, src, dst, stops): # Adjacency Matrix adjList = [[] for _ in range (cities)] # Traverse flight[][] for flight in flights: # Create Adjacency Matrix adjList[flight[ 0 ]].append((flight[ 1 ], flight[ 2 ])) # Implementing Priority Queue pq = [] t = ( 0 , src, stops) hq.heappush(pq, t) # While PQ is not empty while (pq): t = hq.heappop(pq) if (src = = dst): return 0 cost, current, stop = t if (current = = dst): # Return the Answer return cost if (stop > = 0 ): for nxt in adjList[current]: t = ((cost + nxt[ 1 ]), nxt[ 0 ], stop - 1 ) hq.heappush(pq, t) return - 1 if __name__ = = '__main__' : # Input flight : :Source, # Destination, Cost flights = [[ 4 , 1 , 1 ], [ 1 , 2 , 3 ], [ 0 , 3 , 2 ], [ 0 , 4 , 10 ], [ 3 , 1 , 1 ], [ 1 , 4 , 3 ]] # vec, n, stops, src, dst stops = 2 totalCities = 5 # Given source and destination sourceCity = 0 destCity = 4 # Function Call ans = findCheapestPrice( totalCities, flights, sourceCity, destCity, stops) print (ans) |
Javascript
function findCheapestPrice(cities, flights, src, dst, stops) { // Adjacency List const adjList = Array.from({ length: cities }, () => []); // Traverse flights[][] for (const flight of flights) { // Create Adjacency List adjList[flight[0]].push([flight[1], flight[2]]); } // Implementing Priority Queue const pq = []; const t = [0, src, stops]; pq.push(t); // While PQ is not empty while (pq.length > 0) { const t = pq.shift(); if (src == dst) { return 0; } const [cost, current, stop] = t; if (current == dst) { // Return the answer return cost; } if (stop >= 0) { for (const [nxt, price] of adjList[current]) { const t = [cost + price, nxt, stop - 1]; pq.push(t); } pq.sort((a, b) => a[0] - b[0]); } } return -1; } // Input flight: [Source, Destination, Cost] const flights = [ [4, 1, 1], [1, 2, 3], [0, 3, 2], [0, 4, 10], [3, 1, 1], [1, 4, 3], ]; // vec, n, stops, src, dst const stops = 2; const totalCities = 5; // Given source and destination const sourceCity = 0; const destCity = 4; // Function call const ans = findCheapestPrice( totalCities, flights, sourceCity, destCity, stops ); console.log(ans); |
C#
//C# program for the above approach using System; using System.Collections.Generic; public class MainClass { public static int findCheapestPrice( int cities, int [][] flights, int src, int dst, int stops) { // Adjacency Matrix List<List<Tuple< int , int >>> adjList = new List<List<Tuple< int , int >>>(); for ( int i = 0; i < cities; i++) { adjList.Add( new List<Tuple< int , int >>()); } // Traverse flight[][] foreach ( int [] flight in flights) { // Create Adjacency Matrix adjList[flight[0]].Add(Tuple.Create(flight[1], flight[2])); } // Implementing Priority Queue List<Tuple< int , int , int >> pq = new List<Tuple< int , int , int >>(); Tuple< int , int , int > t = Tuple.Create(0, src, stops); pq.Add(t); // While PQ is not empty while (pq.Count > 0) { t = pq[0]; pq.RemoveAt(0); if (src == dst) { return 0; } int cost = t.Item1; int current = t.Item2; int stop = t.Item3; if (current == dst) { // Return the Answer return cost; } if (stop >= 0) { foreach (Tuple< int , int > nxt in adjList[current]) { t = Tuple.Create(cost + nxt.Item2, nxt.Item1, stop - 1); pq.Add(t); } pq.Sort(); } } return -1; } public static void Main() { // Input flight : :Source, // Destination, Cost int [][] flights = new int [][]{ new int []{4, 1, 1}, new int []{1, 2, 3}, new int []{0, 3, 2}, new int []{0, 4, 10}, new int []{3, 1, 1}, new int []{1, 4, 3} }; // vec, n, stops, src, dst int stops = 2; int totalCities = 5; // Given source and destination int sourceCity = 0; int destCity = 4; // Function Call int ans = findCheapestPrice(totalCities, flights, sourceCity, destCity, stops); Console.WriteLine(ans); } } //This code is contributed by shivamsharma215 |
6
Time Complexity: O(E+V log V) where V is the number of nodes and E is the edges.
Auxiliary Space: O(V)
Method 4: Using Bellmon Ford
- Initialize distances from the source to all vertices as infinite and distance to the source itself as 0.
- Do Edge Relaxation at each step: D denotes Distance and w denotes weights
- If D[u] + w(u, z) < D[z] then D[z] = D[u] + w(u, z)
- The algorithm has been modified to solve the given problem instead of relaxing the graph V-1 times, we will do it for the given number of stops.
Below is the implementation of the above approach
C++
// C++ program of the above Approach #include <bits/stdc++.h> #include <vector> using namespace std; // Function to find the cheapest cost // from source to destination using K stops int findCheapestPrice( int cities, vector<vector< int > >& flights, int src, int dst, int stops) { // Distance from source to all other nodes vector< int > dist(cities, INT_MAX); dist[src] = 0; // Do relaxation for V-1 vertices // here we need for K stops so we // will do relaxation for k+1 stops for ( int i = 0; i <= stops; i++) { vector< int > intermediate(dist); for ( auto flight : flights) { if (dist[flight[0]] != INT_MAX) { intermediate[flight[1]] = min(intermediate[flight[1]], dist[flight[0]] + flight[2]); } } // Update the distance vector dist = intermediate; } // Return the final cost return dist[dst] == INT_MAX ? -1 : dist[dst]; } // Driver Code int main() { // Input flight : {Source, Destination, Cost} vector<vector< int > > flights = { { 4, 1, 1 }, { 1, 2, 3 }, { 0, 3, 2 }, { 0, 4, 10 }, { 3, 1, 1 }, { 1, 4, 3 } }; // vec, n, stops, src, dst int stops = 2; int totalCities = 5; // Given source and destination int sourceCity = 0; int destCity = 4; // Function Call long ans = findCheapestPrice( totalCities, flights, sourceCity, destCity, stops); cout << ans; return 0; } |
Java
// Java program of the above approach import java.util.*; public class Main { // Function to find the cheapest cost // from source to destination using K stops public static int findCheapestPrice( int cities, ArrayList<ArrayList<Integer> > flights, int src, int dst, int stops) { // Distance from source to all other nodes ArrayList<Integer> dist = new ArrayList<Integer>(); for ( int i = 0 ; i < cities; i++) { dist.add(Integer.MAX_VALUE); } dist.set(src, 0 ); // Do relaxation for V-1 vertices // here we need for K stops so we // will do relaxation for k+1 stops for ( int i = 0 ; i <= stops; i++) { ArrayList<Integer> intermediate = new ArrayList<Integer>(dist); for (ArrayList<Integer> flight : flights) { if (dist.get(flight.get( 0 )) != Integer.MAX_VALUE) { intermediate.set( flight.get( 1 ), Math.min( intermediate.get(flight.get( 1 )), dist.get(flight.get( 0 )) + flight.get( 2 ))); } } // Update the distance vector dist = intermediate; } // Return the final cost return dist.get(dst) == Integer.MAX_VALUE ? - 1 : dist.get(dst); } // Driver Code public static void main(String[] args) { // Input flight : {Source, Destination, Cost} ArrayList<ArrayList<Integer> > flights = new ArrayList<ArrayList<Integer> >(); flights.add( new ArrayList<Integer>(Arrays.asList( 4 , 1 , 1 ))); flights.add( new ArrayList<Integer>(Arrays.asList( 1 , 2 , 3 ))); flights.add( new ArrayList<Integer>(Arrays.asList( 0 , 3 , 2 ))); flights.add( new ArrayList<Integer>( Arrays.asList( 0 , 4 , 10 ))); flights.add( new ArrayList<Integer>(Arrays.asList( 3 , 1 , 1 ))); flights.add( new ArrayList<Integer>(Arrays.asList( 1 , 4 , 3 ))); // vec, n, stops, src, dst int stops = 2 ; int totalCities = 5 ; // Given source and destination int sourceCity = 0 ; int destCity = 4 ; // Function Call int ans = findCheapestPrice(totalCities, flights, sourceCity, destCity, stops); System.out.println(ans); } } // This code is contributed by rishabmalhdijo |
Python3
# Python3 program of the above Approach # Function to find the cheapest cost # from source to destination using K stops def findCheapestPrice(cities, flights, src, dst, stops): # Distance from source to all other nodes dist = [ 1e9 ] * cities dist[src] = 0 # Do relaxation for V-1 vertices # here we need for K stops so we # will do relaxation for k+1 stops for i in range (stops): intermediate = dist for flight in flights: if (dist[flight[ 0 ]] ! = 1e9 ) : intermediate[flight[ 1 ]] = min (intermediate[flight[ 1 ]], dist[flight[ 0 ]] + flight[ 2 ]) # Update the distance vector dist = intermediate # Return the final cost return - 1 if dist[dst] = = 1e9 else dist[dst] # Driver Code if __name__ = = '__main__' : # Input flight : :Source, Destination, Cost flights = [[ 4 , 1 , 1 ], [ 1 , 2 , 3 ], [ 0 , 3 , 2 ], [ 0 , 4 , 10 ], [ 3 , 1 , 1 ], [ 1 , 4 , 3 ]] # vec, n, stops, src, dst stops = 2 totalCities = 5 # Given source and destination sourceCity = 0 destCity = 4 # Function Call ans = findCheapestPrice( totalCities, flights, sourceCity, destCity, stops) print (ans) |
C#
using System; using System.Collections.Generic; using System.Linq; class MainClass { // Function to find the cheapest cost // from source to destination using K stops public static int FindCheapestPrice( int cities, List<List< int >> flights, int src, int dst, int stops) { // Distance from source to all other nodes List< int > dist = new List< int >(Enumerable.Repeat(Int32.MaxValue, cities)); dist[src] = 0; // Do relaxation for V-1 vertices // here we need for K stops so we // will do relaxation for k+1 stops for ( int i = 0; i <= stops; i++) { List< int > intermediate = new List< int >(dist); foreach (List< int > flight in flights) { if (dist[flight[0]] != Int32.MaxValue) { intermediate[flight[1]] = Math.Min( intermediate[flight[1]], dist[flight[0]] + flight[2]); } } // Update the distance vector dist = intermediate; } // Return the final cost return dist[dst] == Int32.MaxValue ? -1 : dist[dst]; } // Driver Code public static void Main() { // Input flight : {Source, Destination, Cost} List<List< int >> flights = new List<List< int >> { new List< int > {4, 1, 1}, new List< int > {1, 2, 3}, new List< int > {0, 3, 2}, new List< int > {0, 4, 10}, new List< int > {3, 1, 1}, new List< int > {1, 4, 3} }; // vec, n, stops, src, dst int stops = 2; int totalCities = 5; // Given source and destination int sourceCity = 0; int destCity = 4; // Function Call int ans = FindCheapestPrice(totalCities, flights, sourceCity, destCity, stops); Console.WriteLine(ans); } } // This code is contributed by Prajwal Kandekar |
Javascript
// JavaScript program of the above Approach // Function to find the cheapest cost // from source to destination using K stops function findCheapestPrice(cities,flights,src,dst,stops) { // Distance from source to all other nodes var dist = Array(cities).fill(Number.MAX_VALUE); dist[src] = 0; // Do relaxation for V-1 vertices // here we need for K stops so we // will do relaxation for k+1 stops for (let i = 0; i <= stops; i++) { var intermediate = [...dist]; for (let flight of flights) { if (dist[flight[0]] != Number.MAX_VALUE) { intermediate[flight[1]] = Math.min(intermediate[flight[1]], dist[flight[0]] + flight[2]); } } // Update the distance vector dist = [...intermediate]; } // Return the final cost return dist[dst] == Number.MAX_VALUE ? -1 : dist[dst]; } // Driver code const flights = [ [4, 1, 1], [1, 2, 3], [0, 3, 2], [0, 4, 10], [3, 1, 1], [1, 4, 3] ]; let stops = 2; let totalCities = 5; let sourceCity = 0; let destCity = 4; let ans = findCheapestPrice(totalCities, flights, sourceCity, destCity, stops); console.log(ans); // This code is contributed by ishankhandelwals. |
6
Time Complexity: O(E*V) where V is the number of nodes and E is the edges.
Auxiliary Space:O(V)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!