Sunday, November 17, 2024
Google search engine
HomeLanguagesDynamic ProgrammingPrint Longest Palindromic Subsequence

Print Longest Palindromic Subsequence

Given a sequence, print a longest palindromic subsequence of it. 

Examples : 

Input : BBABCBCAB
Output : BABCBAB
The above output is the longest
palindromic subsequence of given
sequence. "BBBBB" and "BBCBB" are 
also palindromic subsequences of
the given sequence, but not the 
longest ones.

Input : GEEKSFORGEEKS
Output : Output can be either EEKEE
         or EESEE or EEGEE, ..

We have discussed a solution in below post to find length of longest palindromic subsequence. 
Dynamic Programming | Set 12 (Longest Palindromic Subsequence)

Method 1:

This problem is close to the Longest Common Subsequence (LCS) problem. In fact, we can use LCS as a subroutine to solve this problem. Following is the two step solution that uses LCS. 

  1. Reverse the given sequence and store the reverse in another array say rev[0..n-1] 
  2. LCS of the given sequence and rev[] will be the longest palindromic sequence. 
  3. Once we have found LCS, we can print the LCS.

Below is the implementation of above approach:

C++




/* CPP program to print longest palindromic
   subsequence */
#include<bits/stdc++.h>
using namespace std;
 
/* Returns LCS X and Y */
string lcs(string &X, string &Y)
{
    int m = X.length();
    int n = Y.length();
 
    int L[m+1][n+1];
 
    /* Following steps build L[m+1][n+1] in bottom
       up fashion. Note that L[i][j] contains
       length of LCS of X[0..i-1] and Y[0..j-1] */
    for (int i=0; i<=m; i++)
    {
        for (int j=0; j<=n; j++)
        {
            if (i == 0 || j == 0)
                L[i][j] = 0;
            else if (X[i-1] == Y[j-1])
                L[i][j] = L[i-1][j-1] + 1;
            else
                L[i][j] = max(L[i-1][j], L[i][j-1]);
        }
    }
 
    // Following code is used to print LCS
    int index = L[m][n];
 
    // Create a string length index+1 and
    // fill it with \0
    string lcs(index+1, '\0');
 
    // Start from the right-most-bottom-most
    // corner and one by one store characters
    // in lcs[]
    int i = m, j = n;
    while (i > 0 && j > 0)
    {
        // If current character in X[] and Y
        // are same, then current character
        // is part of LCS
        if (X[i-1] == Y[j-1])
        {
            // Put current character in result
            lcs[index-1] = X[i-1];
            i--;
            j--;
 
            // reduce values of i, j and index
            index--;
        }
 
        // If not same, then find the larger of
        // two and go in the direction of larger
        // value
        else if (L[i-1][j] > L[i][j-1])
            i--;
        else
            j--;
    }
 
    return lcs;
}
 
// Returns longest palindromic subsequence
// of str
string longestPalSubseq(string &str)
{
    // Find reverse of str
    string rev = str;
    reverse(rev.begin(), rev.end());
 
    // Return LCS of str and its reverse
    return lcs(str, rev);
}
 
/* Driver program to test above function */
int main()
{
    string str = "GEEKSFORGEEKS";
    cout << longestPalSubseq(str);
    return 0;
}


Java




// Java program to print longest palindromic
// subsequence
import java.io.*;
class GFG {
 
    /* Returns LCS X and Y */
    static String lcs(String a, String b)
    {
        int m = a.length();
        int n = b.length();
        char X[] = a.toCharArray();
        char Y[] = b.toCharArray();
 
        int L[][] = new int[m + 1][n + 1];
 
        /* Following steps build L[m+1][n+1] in bottom
    up fashion. Note that L[i][j] contains
    length of LCS of X[0..i-1] and Y[0..j-1] */
        for (int i = 0; i <= m; i++) {
            for (int j = 0; j <= n; j++) {
                if (i == 0 || j == 0) {
                    L[i][j] = 0;
                }
                else if (X[i - 1] == Y[j - 1]) {
                    L[i][j] = L[i - 1][j - 1] + 1;
                }
                else {
                    L[i][j] = Math.max(L[i - 1][j],
                                       L[i][j - 1]);
                }
            }
        }
 
        // Following code is used to print LCS
        int index = L[m][n];
 
        // Create a String length index+1 and
        // fill it with \0
        char[] lcs = new char[index + 1];
 
        // Start from the right-most-bottom-most
        // corner and one by one store characters
        // in lcs[]
        int i = m, j = n;
        while (i > 0 && j > 0) {
            // If current character in X[] and Y
            // are same, then current character
            // is part of LCS
            if (X[i - 1] == Y[j - 1]) {
                // Put current character in result
                lcs[index - 1] = X[i - 1];
                i--;
                j--;
 
                // reduce values of i, j and index
                index--;
            } // If not same, then find the larger of
            // two and go in the direction of larger
            // value
            else if (L[i - 1][j] > L[i][j - 1]) {
                i--;
            }
            else {
                j--;
            }
        }
        String ans = "";
        for (int x = 0; x < lcs.length; x++) {
            ans += lcs[x];
        }
        return ans;
    }
 
    // Returns longest palindromic subsequence
    // of str
    static String longestPalSubseq(String str)
    {
        // Find reverse of str
        String rev = str;
        rev = reverse(rev);
 
        // Return LCS of str and its reverse
        return lcs(str, rev);
    }
 
    static String reverse(String str)
    {
        String ans = "";
        // convert String to character array
        // by using toCharArray
        char[] try1 = str.toCharArray();
 
        for (int i = try1.length - 1; i >= 0; i--) {
            ans += try1[i];
        }
        return ans;
    }
 
    /* Driver program to test above function */
    public static void main(String[] args)
    {
        String str = "GEEKSFORGEEKS";
        System.out.println(longestPalSubseq(str));
    }
}


Python3




# Python3 program to print longest
# palindromic subsequence
 
# Returns LCS X and Y
def lcs_(X, Y) :
     
    m = len(X)
    n = len(Y)
 
    L = [[0] * (n + 1)] * (m + 1)
 
    # Following steps build L[m+1][n+1]
    # in bottom up fashion. Note that
    # L[i][j] contains length of LCS of
    # X[0..i-1] and Y[0..j-1]
    for i in range(n + 1) :
     
        for j in range(n + 1) :
     
            if (i == 0 or j == 0) :
                L[i][j] = 0;
            elif (X[i - 1] == Y[j - 1]) :
                L[i][j] = L[i - 1][j - 1] + 1;
            else :
                L[i][j] = max(L[i - 1][j],
                              L[i][j - 1]);
     
    # Following code is used to print LCS
    index = L[m][n];
 
    # Create a string length index+1 and
    # fill it with \0
    lcs = ["\n "] * (index + 1)
 
    # Start from the right-most-bottom-most
    # corner and one by one store characters
    # in lcs[]
    i, j= m, n
     
    while (i > 0 and j > 0) :
     
        # If current character in X[] and Y
        # are same, then current character
        # is part of LCS
        if (X[i - 1] == Y[j - 1]) :
         
            # Put current character in result
            lcs[index - 1] = X[i - 1]
            i -= 1
            j -= 1
 
            # reduce values of i, j and index
            index -= 1
         
        # If not same, then find the larger of
        # two and go in the direction of larger
        # value
        elif(L[i - 1][j] > L[i][j - 1]) :
            i -= 1
             
        else :
            j -= 1
     
    ans = ""
     
    for x in range(len(lcs)) :
        ans += lcs[x]
     
    return ans
 
# Returns longest palindromic
# subsequence of str
def longestPalSubseq(string) :
     
    # Find reverse of str
    rev = string[: : -1]
     
    # Return LCS of str and its reverse
    return lcs_(string, rev)
 
# Driver Code
if __name__ == "__main__" :
 
    string = "GEEKSFORGEEKS";
    print(longestPalSubseq(string))
 
# This code is contributed by Ryuga


C#




// C# program to print longest palindromic
//subsequence
using System;
 
public class GFG {
  
    /* Returns LCS X and Y */
    static String lcs(String a, String b) {
        int m = a.Length;
        int n = b.Length;
        char []X = a.ToCharArray();
        char []Y = b.ToCharArray();
  
        int [,]L = new int[m + 1,n + 1];
         int i, j;
        /* Following steps build L[m+1,n+1] in bottom
    up fashion. Note that L[i,j] contains
    length of LCS of X[0..i-1] and Y[0..j-1] */
        for (i = 0; i <= m; i++) {
            for (j = 0; j <= n; j++) {
                if (i == 0 || j == 0) {
                    L[i,j] = 0;
                } else if (X[i - 1] == Y[j - 1]) {
                    L[i,j] = L[i - 1,j - 1] + 1;
                } else {
                    L[i,j] = Math.Max(L[i - 1,j], L[i,j - 1]);
                }
            }
        }
  
        // Following code is used to print LCS
        int index = L[m,n];
  
        // Create a String length index+1 and
        // fill it with \0
        char[] lcs = new char[index + 1];
  
        // Start from the right-most-bottom-most
        // corner and one by one store characters
        // in lcs[]
        i = m; j = n;
        while (i > 0 && j > 0) {
            // If current character in X[] and Y
            // are same, then current character
            // is part of LCS
            if (X[i - 1] == Y[j - 1]) {
                // Put current character in result
                lcs[index - 1] = X[i - 1];
                i--;
                j--;
  
                // reduce values of i, j and index
                index--;
            } // If not same, then find the larger of
            // two and go in the direction of larger
            // value
            else if (L[i - 1,j] > L[i,j - 1]) {
                i--;
            } else {
                j--;
            }
        }
        String ans = "";
        for (int x = 0; x < lcs.Length; x++) {
            ans += lcs[x];
        }
        return ans;
    }
  
// Returns longest palindromic subsequence
// of str
    static String longestPalSubseq(String str) {
        // Find reverse of str
        String rev = str;
        rev = reverse(rev);
  
        // Return LCS of str and its reverse
        return lcs(str, rev);
    }
  
    static String reverse(String str) {
        String ans = "";
        // convert String to character array
        // by using toCharArray
        char[] try1 = str.ToCharArray();
  
        for (int i = try1.Length - 1; i >= 0; i--) {
            ans += try1[i];
        }
        return ans;
    }
  
    /* Driver program to test above function */
    public static void Main() {
        String str = "GEEKSFORGEEKS";
        Console.Write(longestPalSubseq(str));
  
    }
}
// This code is contributed by 29AjayKumar


Javascript




<script>
    // Javascript program to print longest palindromic subsequence
     
    /* Returns LCS X and Y */
    function lcs(a, b) {
        let m = a.length;
        let n = b.length;
        let X = a.split('');
        let Y = b.split('');
   
        let L = new Array(m + 1);
        for (let i = 0; i <= m; i++) {
            L[i] = new Array(n + 1);
            for (let j = 0; j <= n; j++) {
                L[i][j] = 0;
            }
        }
   
        /* Following steps build L[m+1][n+1] in bottom
    up fashion. Note that L[i][j] contains
    length of LCS of X[0..i-1] and Y[0..j-1] */
        for (let i = 0; i <= m; i++) {
            for (let j = 0; j <= n; j++) {
                if (i == 0 || j == 0) {
                    L[i][j] = 0;
                } else if (X[i - 1] == Y[j - 1]) {
                    L[i][j] = L[i - 1][j - 1] + 1;
                } else {
                    L[i][j] = Math.max(L[i - 1][j], L[i][j - 1]);
                }
            }
        }
   
        // Following code is used to print LCS
        let index = L[m][n];
   
        // Create a String length index+1 and
        // fill it with \0
        let lcs = new Array(index + 1);
        lcs.fill('');
   
        // Start from the right-most-bottom-most
        // corner and one by one store characters
        // in lcs[]
        let i = m, j = n;
        while (i > 0 && j > 0) {
            // If current character in X[] and Y
            // are same, then current character
            // is part of LCS
            if (X[i - 1] == Y[j - 1]) {
                // Put current character in result
                lcs[index - 1] = X[i - 1];
                i--;
                j--;
   
                // reduce values of i, j and index
                index--;
            } // If not same, then find the larger of
            // two and go in the direction of larger
            // value
            else if (L[i - 1][j] > L[i][j - 1]) {
                i--;
            } else {
                j--;
            }
        }
        let ans = "";
        for (let x = 0; x < lcs.length; x++) {
            ans += lcs[x];
        }
        return ans;
    }
   
// Returns longest palindromic subsequence
// of str
    function longestPalSubseq(str) {
        // Find reverse of str
        let rev = str;
        rev = reverse(rev);
   
        // Return LCS of str and its reverse
        return lcs(str, rev);
    }
   
    function reverse(str) {
        let ans = "";
        // convert String to character array
        // by using toCharArray
        let try1 = str.split('');
   
        for (let i = try1.length - 1; i >= 0; i--) {
            ans += try1[i];
        }
        return ans;
    }
     
    let str = "GEEKSFORGEEKS";
      document.write(longestPalSubseq(str));
     
    // This code is contributed by suresh07.
</script>


Output: 
 

EEGEE

Time Complexity: O(n*m)
Auxiliary Space: O(n*m)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments