Given a string ‘S’ consisting of open and closed brackets, the task is find the number of ways in which each character of ‘S’ can be assigned to either a string ‘X’ or string ‘Y’ (both initially empty) such that the strings formed by X and Y are balanced. It can be assumed that ‘S’ is itself balanced.
Examples:
Input: S = "(())"
Output: 6
Valid assignments are :
X = "(())" and Y = "" [All characters in X]
X = "" and Y = "(())" [Nothing in X]
X = "()" and Y = "()" [1st and 3rd characters in X]
X = "()" and Y = "()" [2nd and 3rd characters in X]
X = "()" and Y = "()" [2nd and 4th characters in X]
X = "()" and Y = "()" [1st and 4th characters in X]
Input: S = "()()"
Output: 4
X = "()()", Y = ""
X = "()", Y = "()" [1st and 2nd in X]
X = "()", Y = "" [1st and 4th in X]
X = "", Y = "()()"
A simple approach:
We can generate every possible way of assigning the characters, and check if the strings formed are balanced or not. There are 2n assignments, valid or invalid, and it takes O(n) time to check if the strings formed are balanced or not. Therefore the time complexity of this approach is O(n * 2n).
An efficient approach (Dynamic programming):
We can solve this problem in a more efficient manner using Dynamic Programming. We can describe the current state of assignment using three variables: the index i of the character to be assigned, and the strings formed by X and Y up to that state. Passing the whole strings to function calls will result in high memory requirements, so we can replace them with count variables cx and cy. We will increment the count variable for every opening bracket and decrement it for every closing bracket. The time and space complexity of this approach is O(n3).
Below is the implementation of the above approach:
C++
// C++ implementation of // the above approach #include <bits/stdc++.h> using namespace std; // For maximum length of input string const int MAX = 10; // Declaring the DP table int F[MAX][MAX][MAX]; // Function to calculate the // number of valid assignments int noOfAssignments(string& S, int & n, int i, int c_x, int c_y) { if (F[i][c_x][c_y] != -1) return F[i][c_x][c_y]; if (i == n) { // Return 1 if both // subsequences are balanced F[i][c_x][c_y] = !c_x && !c_y; return F[i][c_x][c_y]; } // Increment the count // if it an opening bracket if (S[i] == '(' ) { F[i][c_x][c_y] = noOfAssignments(S, n, i + 1, c_x + 1, c_y) + noOfAssignments(S, n, i + 1, c_x, c_y + 1); return F[i][c_x][c_y]; } F[i][c_x][c_y] = 0; // Decrement the count // if it a closing bracket if (c_x) F[i][c_x][c_y] += noOfAssignments(S, n, i + 1, c_x - 1, c_y); if (c_y) F[i][c_x][c_y] += noOfAssignments(S, n, i + 1, c_x, c_y - 1); return F[i][c_x][c_y]; } // Driver code int main() { string S = "(())" ; int n = S.length(); // Initializing the DP table memset (F, -1, sizeof (F)); // Initial value for c_x // and c_y is zero cout << noOfAssignments(S, n, 0, 0, 0); return 0; } |
Java
// Java implementation of the above approach class GFG { // For maximum length of input string static int MAX = 10 ; // Declaring the DP table static int [][][] F = new int [MAX][MAX][MAX]; // Function to calculate the // number of valid assignments static int noOfAssignments(String s, int n, int i, int c_x, int c_y) { if (F[i][c_x][c_y] != - 1 ) return F[i][c_x][c_y]; if (i == n) { // Return 1 if both // subsequences are balanced F[i][c_x][c_y] = (c_x == 0 && c_y == 0 ) ? 1 : 0 ; return F[i][c_x][c_y]; } // Increment the count // if it an opening bracket if (s.charAt(i) == '(' ) { F[i][c_x][c_y] = noOfAssignments(s, n, i + 1 , c_x + 1 , c_y) + noOfAssignments(s, n, i + 1 , c_x, c_y + 1 ); return F[i][c_x][c_y]; } F[i][c_x][c_y] = 0 ; // Decrement the count // if it a closing bracket if (c_x != 0 ) F[i][c_x][c_y] += noOfAssignments(s, n, i + 1 , c_x - 1 , c_y); if (c_y != 0 ) F[i][c_x][c_y] += noOfAssignments(s, n, i + 1 , c_x, c_y - 1 ); return F[i][c_x][c_y]; } // Driver Code public static void main(String[] args) { String s = "(())" ; int n = s.length(); // Initializing the DP table for ( int i = 0 ; i < MAX; i++) for ( int j = 0 ; j < MAX; j++) for ( int k = 0 ; k < MAX; k++) F[i][j][k] = - 1 ; // Initial value for c_x // and c_y is zero System.out.println(noOfAssignments(s, n, 0 , 0 , 0 )); } } // This code is contributed by // sanjeev2552 |
Python3
# Python3 implementation of above approach # For maximum length of input string MAX = 10 # Declaring the DP table F = [[[ - 1 for i in range ( MAX )] for j in range ( MAX )] for k in range ( MAX )] # Function to calculate the number # of valid assignments def noOfAssignments(S, n, i, c_x, c_y): if F[i][c_x][c_y] ! = - 1 : return F[i][c_x][c_y] if i = = n: # Return 1 if both subsequences are balanced F[i][c_x][c_y] = not c_x and not c_y return F[i][c_x][c_y] # Increment the count if # it is an opening bracket if S[i] = = '(' : F[i][c_x][c_y] = \ noOfAssignments(S, n, i + 1 , c_x + 1 , c_y) + \ noOfAssignments(S, n, i + 1 , c_x, c_y + 1 ) return F[i][c_x][c_y] F[i][c_x][c_y] = 0 # Decrement the count # if it a closing bracket if c_x: F[i][c_x][c_y] + = \ noOfAssignments(S, n, i + 1 , c_x - 1 , c_y) if c_y: F[i][c_x][c_y] + = \ noOfAssignments(S, n, i + 1 , c_x, c_y - 1 ) return F[i][c_x][c_y] # Driver code if __name__ = = "__main__" : S = "(())" n = len (S) # Initial value for c_x and c_y is zero print (noOfAssignments(S, n, 0 , 0 , 0 )) # This code is contributed by Rituraj Jain |
C#
// C# implementation of the above approach using System; class GFG { // For maximum length of input string static int MAX = 10; // Declaring the DP table static int [,,] F = new int [MAX, MAX, MAX]; // Function to calculate the // number of valid assignments static int noOfAssignments(String s, int n, int i, int c_x, int c_y) { if (F[i, c_x, c_y] != -1) return F[i, c_x, c_y]; if (i == n) { // Return 1 if both // subsequences are balanced F[i, c_x, c_y] = (c_x == 0 && c_y == 0) ? 1 : 0; return F[i, c_x, c_y]; } // Increment the count // if it an opening bracket if (s[i] == '(' ) { F[i, c_x, c_y] = noOfAssignments(s, n, i + 1, c_x + 1, c_y) + noOfAssignments(s, n, i + 1, c_x, c_y + 1); return F[i, c_x, c_y]; } F[i, c_x, c_y] = 0; // Decrement the count // if it a closing bracket if (c_x != 0) F[i, c_x, c_y] += noOfAssignments(s, n, i + 1, c_x - 1, c_y); if (c_y != 0) F[i, c_x, c_y] += noOfAssignments(s, n, i + 1, c_x, c_y - 1); return F[i, c_x, c_y]; } // Driver Code public static void Main(String[] args) { String s = "(())" ; int n = s.Length; // Initializing the DP table for ( int i = 0; i < MAX; i++) for ( int j = 0; j < MAX; j++) for ( int k = 0; k < MAX; k++) F[i, j, k] = -1; // Initial value for c_x // and c_y is zero Console.WriteLine(noOfAssignments(s, n, 0, 0, 0)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript implementation of the above approach // For maximum length of input string let MAX = 10; // Declaring the DP table let F = new Array(MAX); for (let i = 0; i < MAX; i++) { F[i] = new Array(MAX); for (let j = 0; j < MAX; j++) { F[i][j] = new Array(MAX); for (let k = 0; k < MAX; k++) { F[i][j][k] = -1; } } } // Function to calculate the // number of valid assignments function noOfAssignments(s,n,i,c_x,c_y) { if (F[i][c_x][c_y] != -1) return F[i][c_x][c_y]; if (i == n) { // Return 1 if both // subsequences are balanced F[i][c_x][c_y] = (c_x == 0 && c_y == 0) ? 1 : 0; return F[i][c_x][c_y]; } // Increment the count // if it an opening bracket if (s.charAt(i) == '(' ) { F[i][c_x][c_y] = noOfAssignments(s, n, i + 1, c_x + 1, c_y) + noOfAssignments(s, n, i + 1, c_x, c_y + 1); return F[i][c_x][c_y]; } F[i][c_x][c_y] = 0; // Decrement the count // if it a closing bracket if (c_x != 0) F[i][c_x][c_y] += noOfAssignments(s, n, i + 1, c_x - 1, c_y); if (c_y != 0) F[i][c_x][c_y] += noOfAssignments(s, n, i + 1, c_x, c_y - 1); return F[i][c_x][c_y]; } // Driver Code let s = "(())" ; let n = s.length; // Initial value for c_x // and c_y is zero document.write(noOfAssignments(s, n, 0, 0, 0)); // This code is contributed by rag2127 </script> |
6
Another approach : Using DP Tabulation method ( Iterative approach )
In this approach we use Dp to store computation of subproblems and get the desired output without the help of recursion.
Steps to solve this problem :
- Create a 3D table F to store the solution of the subproblems and initialize it with 0.
- Initialize the table F with base cases
- Now Iterate over subproblems to get the value of current problem form previous computation of subproblems stored in DP
- Return the final solution stored in F[0][0][0]
Implementation :
C++
#include <bits/stdc++.h> using namespace std; int noOfAssignments(string& S, int & n) { // For maximum length of input string const int MAX = n + 1; // Declaring the DP table int F[MAX][MAX][MAX]; memset (F, 0, sizeof (F)); // Base case: both subsequences are balanced for ( int i=0; i<=n; i++) { F[i][0][0] = 1; } // Filling up the table in a bottom-up manner for ( int i=n-1; i>=0; i--) { for ( int c_x=0; c_x<=n; c_x++) { for ( int c_y=0; c_y<=n; c_y++) { // If current character is an opening bracket if (S[i] == '(' ) { F[i][c_x][c_y] = F[i+1][c_x+1][c_y] + F[i+1][c_x][c_y+1]; } // If current character is a closing bracket else { F[i][c_x][c_y] = 0; if (c_x > 0) { F[i][c_x][c_y] += F[i+1][c_x-1][c_y]; } if (c_y > 0) { F[i][c_x][c_y] += F[i+1][c_x][c_y-1]; } } } } } // Final result return F[0][0][0]; } int main() { string S = "(())" ; int n = S.length(); cout << noOfAssignments(S, n); return 0; } |
Java
import java.util.*; public class BalancedParenthesesCount { public static int noOfAssignments(String S, int n) { // For maximum length of input string final int MAX = n + 2 ; // Declaring the DP table int [][][] F = new int [MAX][MAX][MAX]; for ( int i = 0 ; i < MAX; i++) { for ( int j = 0 ; j < MAX; j++) { Arrays.fill(F[i][j], 0 ); } } // Base case: both subsequences are balanced for ( int i = 0 ; i <= n; i++) { F[i][ 0 ][ 0 ] = 1 ; } // Filling up the table in a bottom-up manner for ( int i = n - 1 ; i >= 0 ; i--) { for ( int c_x = 0 ; c_x <= n; c_x++) { for ( int c_y = 0 ; c_y <= n; c_y++) { // If current character is an opening bracket if (S.charAt(i) == '(' ) { F[i][c_x][c_y] = F[i + 1 ][c_x + 1 ][c_y] + F[i + 1 ][c_x][c_y + 1 ]; } // If current character is a closing bracket else { F[i][c_x][c_y] = 0 ; if (c_x > 0 ) { F[i][c_x][c_y] += F[i + 1 ][c_x - 1 ][c_y]; } if (c_y > 0 ) { F[i][c_x][c_y] += F[i + 1 ][c_x][c_y - 1 ]; } } } } } // Final result return F[ 0 ][ 0 ][ 0 ]; } public static void main(String[] args) { String S = "(())" ; int n = S.length(); System.out.println(noOfAssignments(S, n)); } } |
C#
using System; class GFG { static int noOfAssignments( string S, ref int n) { // For maximum length of input string const int MAX = 101; // Declaring the DP table int [, , ] F = new int [MAX, MAX, MAX]; // Initialize the DP table to 0 for ( int i = 0; i < MAX; i++) { for ( int j = 0; j < MAX; j++) { for ( int k = 0; k < MAX; k++) { F[i, j, k] = 0; } } } // Base case: both subsequences are balanced for ( int i = 0; i <= n; i++) { F[i, 0, 0] = 1; } // Filling up the table in a bottom-up manner for ( int i = n - 1; i >= 0; i--) { for ( int c_x = 0; c_x <= n; c_x++) { for ( int c_y = 0; c_y <= n; c_y++) { // If current character is an opening // bracket if (S[i] == '(' ) { F[i, c_x, c_y] = F[i + 1, c_x + 1, c_y] + F[i + 1, c_x, c_y + 1]; } // If current character is a closing // bracket else { F[i, c_x, c_y] = 0; if (c_x > 0) { F[i, c_x, c_y] += F[i + 1, c_x - 1, c_y]; } if (c_y > 0) { F[i, c_x, c_y] += F[i + 1, c_x, c_y - 1]; } } } } } // Final result return F[0, 0, 0]; } static void Main() { string S = "(())" ; int n = S.Length; Console.WriteLine(noOfAssignments(S, ref n)); } } |
Output:
6
Time complexity : O(N^3)
Auxiliary Space : O(N^3)
Optimized Dynamic Programming approach:
We can create a prefix array to store the count variable ci for the substring S[0 : i + 1]. We can observe that the sum of c_x and c_y will always be equal to the count variable for the whole string. By exploiting this property, we can reduce our dynamic programming approach to two states. A prefix array can be created in linear complexity, so the time and space complexity of this approach is O(n2).
Implementation:
C++
// C++ implementation of // the above approach #include <bits/stdc++.h> using namespace std; // For maximum length of input string const int MAX = 10; // Declaring the DP table int F[MAX][MAX]; // Declaring the prefix array int C[MAX]; // Function to calculate the // number of valid assignments int noOfAssignments(string& S, int & n, int i, int c_x) { if (F[i][c_x] != -1) return F[i][c_x]; if (i == n) { // Return 1 if X is // balanced. F[i][c_x] = !c_x; return F[i][c_x]; } int c_y = C[i] - c_x; // Increment the count // if it an opening bracket if (S[i] == '(' ) { F[i][c_x] = noOfAssignments(S, n, i + 1, c_x + 1) + noOfAssignments(S, n, i + 1, c_x); return F[i][c_x]; } F[i][c_x] = 0; // Decrement the count // if it a closing bracket if (c_x) F[i][c_x] += noOfAssignments(S, n, i + 1, c_x - 1); if (c_y) F[i][c_x] += noOfAssignments(S, n, i + 1, c_x); return F[i][c_x]; } // Driver code int main() { string S = "()" ; int n = S.length(); // Initializing the DP table memset (F, -1, sizeof (F)); C[0] = 0; // Creating the prefix array for ( int i = 0; i < n; ++i) if (S[i] == '(' ) C[i + 1] = C[i] + 1; else C[i + 1] = C[i] - 1; // Initial value for c_x // and c_y is zero cout << noOfAssignments(S, n, 0, 0); return 0; } |
Java
// Java implementation of the approach public class GFG { // For maximum length of input string static int MAX = 10 ; // Declaring the DP table static int F[][] = new int [MAX][MAX]; // Declaring the prefix array static int C[] = new int [MAX]; // Function to calculate the // number of valid assignments static int noOfAssignments(String S, int n, int i, int c_x) { if (F[i][c_x] != - 1 ) { return F[i][c_x]; } if (i == n) { // Return 1 if X is // balanced. if (c_x == 1 ) { F[i][c_x] = 0 ; } else { F[i][c_x] = 1 ; } return F[i][c_x]; } int c_y = C[i] - c_x; // Increment the count // if it an opening bracket if (S.charAt(i) == '(' ) { F[i][c_x] = noOfAssignments(S, n, i + 1 , c_x + 1 ) + noOfAssignments(S, n, i + 1 , c_x); return F[i][c_x]; } F[i][c_x] = 0 ; // Decrement the count // if it a closing bracket if (c_x == 1 ) { F[i][c_x] += noOfAssignments(S, n, i + 1 , c_x - 1 ); } if (c_y == 1 ) { F[i][c_x] += noOfAssignments(S, n, i + 1 , c_x); } return F[i][c_x]; } // Driver code public static void main(String[] args) { String S = "()" ; int n = S.length(); // Initializing the DP table for ( int i = 0 ; i < MAX; i++) { for ( int j = 0 ; j < MAX; j++) { F[i][j] = - 1 ; } } C[ 0 ] = 0 ; // Creating the prefix array for ( int i = 0 ; i < n; ++i) { if (S.charAt(i) == '(' ) { C[i + 1 ] = C[i] + 1 ; } else { C[i + 1 ] = C[i] - 1 ; } } // Initial value for c_x // and c_y is zero System.out.println(noOfAssignments(S, n, 0 , 0 )); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 implementation of above approach # For maximum length of input string MAX = 10 # Declaring the DP table F = [[ - 1 for i in range ( MAX )] for j in range ( MAX )] # Declaring the prefix array C = [ None ] * MAX # Function to calculate the # number of valid assignments def noOfAssignments(S, n, i, c_x): if F[i][c_x] ! = - 1 : return F[i][c_x] if i = = n: # Return 1 if X is balanced. F[i][c_x] = not c_x return F[i][c_x] c_y = C[i] - c_x # Increment the count # if it is an opening bracket if S[i] = = '(' : F[i][c_x] = \ noOfAssignments(S, n, i + 1 , c_x + 1 ) + \ noOfAssignments(S, n, i + 1 , c_x) return F[i][c_x] F[i][c_x] = 0 # Decrement the count if it is a closing bracket if c_x: F[i][c_x] + = \ noOfAssignments(S, n, i + 1 , c_x - 1 ) if c_y: F[i][c_x] + = \ noOfAssignments(S, n, i + 1 , c_x) return F[i][c_x] # Driver code if __name__ = = "__main__" : S = "()" n = len (S) C[ 0 ] = 0 # Creating the prefix array for i in range ( 0 , n): if S[i] = = '(' : C[i + 1 ] = C[i] + 1 else : C[i + 1 ] = C[i] - 1 # Initial value for c_x and c_y is zero print (noOfAssignments(S, n, 0 , 0 )) # This code is contributed by Rituraj Jain |
C#
// C# implementation of the approach using System; public class GFG { // For maximum length of input string static int MAX = 10; // Declaring the DP table static int [,] F = new int [MAX,MAX]; // Declaring the prefix array static int [] C = new int [MAX]; // Function to calculate the // number of valid assignments static int noOfAssignments( string S, int n, int i, int c_x) { if (F[i,c_x] != -1) { return F[i,c_x]; } if (i == n) { // Return 1 if X is // balanced. if (c_x == 1) { F[i,c_x] = 0; } else { F[i,c_x] = 1; } return F[i,c_x]; } int c_y = C[i] - c_x; // Increment the count // if it an opening bracket if (S[i] == '(' ) { F[i,c_x] = noOfAssignments(S, n, i + 1, c_x + 1) + noOfAssignments(S, n, i + 1, c_x); return F[i,c_x]; } F[i,c_x] = 0; // Decrement the count // if it a closing bracket if (c_x == 1) { F[i,c_x] += noOfAssignments(S, n, i + 1, c_x - 1); } if (c_y == 1) { F[i,c_x] += noOfAssignments(S, n, i + 1, c_x); } return F[i,c_x]; } // Driver code public static void Main() { string S = "()" ; int n = S.Length; // Initializing the DP table for ( int i = 0; i < MAX; i++) { for ( int j = 0; j < MAX; j++) { F[i,j] = -1; } } C[0] = 0; // Creating the prefix array for ( int i = 0; i < n; ++i) { if (S[i] == '(' ) { C[i + 1] = C[i] + 1; } else { C[i + 1] = C[i] - 1; } } // Initial value for c_x // and c_y is zero Console.WriteLine(noOfAssignments(S, n, 0, 0)); } } // This code is contributed by Ita_c. |
Javascript
<script> // Javascript implementation of the approach // For maximum length of input string var MAX = 10; // Declaring the DP table var F = Array.from(Array(MAX), ()=>Array(MAX).fill(0)); // Declaring the prefix array var C = Array(MAX).fill(0); // Function to calculate the // number of valid assignments function noOfAssignments(S, n, i, c_x) { if (F[i][c_x] != -1) { return F[i][c_x]; } if (i == n) { // Return 1 if X is // balanced. if (c_x == 1) { F[i][c_x] = 0; } else { F[i][c_x] = 1; } return F[i][c_x]; } var c_y = C[i] - c_x; // Increment the count // if it an opening bracket if (S[i] == '(' ) { F[i][c_x] = noOfAssignments(S, n, i + 1, c_x + 1) + noOfAssignments(S, n, i + 1, c_x); return F[i][c_x]; } F[i][c_x] = 0; // Decrement the count // if it a closing bracket if (c_x == 1) { F[i][c_x] += noOfAssignments(S, n, i + 1, c_x - 1); } if (c_y == 1) { F[i][c_x] += noOfAssignments(S, n, i + 1, c_x); } return F[i][c_x]; } // Driver code var S = "()" ; var n = S.length; // Initializing the DP table for ( var i = 0; i < MAX; i++) { for ( var j = 0; j < MAX; j++) { F[i][j] = -1; } } C[0] = 0; // Creating the prefix array for ( var i = 0; i < n; ++i) { if (S[i] == '(' ) { C[i + 1] = C[i] + 1; } else { C[i + 1] = C[i] - 1; } } // Initial value for c_x // and c_y is zero document.write(noOfAssignments(S, n, 0, 0) + "<br>" ); // This code is contributed by rrrtnx. </script> |
2
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!