Sunday, November 17, 2024
Google search engine
HomeLanguagesDynamic ProgrammingMinimum length of the reduced Array formed using given operations

Minimum length of the reduced Array formed using given operations

Given an array arr of length N, the task is to minimize its length by performing following operations: 
 

  • Remove any adjacent equal pairs, ( i.e. if arr[i] = arr[i+1]) and replace it with single instance of arr[i] + 1.
  • Each operation decrements the length of the array by 1.
  • Repeat the operation till no more reductions can be made.

Examples: 
 

Input: arr = {3, 3, 4, 4, 4, 3, 3} 
Output:
Explanation: 
Merge the first two 3s and replace them by 4. Updated array: {4, 4, 4, 4, 3, 3} 
Merge the first two 4s and replace them by 5. Updated array: {5, 4, 4, 3, 3} 
Merge the two 4s and replace them by 5. Updated array: {5, 5, 3, 3} 
Merge the two 5s and replace them by 6. Updated array: {6, 3, 3} 
Merge the two 3s and replace them by 4. Updated array: {6, 4} 
Hence, the minimum length of the reduced array = 2
Input: arr = {4, 3, 2, 2, 3} 
Output:
Explanation: 
Merge the two 2s and replace them by 3. Updated array: {4, 3, 3, 3} 
Merge the first two 3s and replace them by 4. Updated array: {4, 4, 3} 
Merge the two 4s and replace them by 5. Updated array: {5, 3} 
Hence, the minimum length of the reduced array = 2 
 

 

Approach: The above mentioned problem can be solved using Dynamic Programming. It can be observed that each element in the final array will be the result of the replacement of a number of elements on the corresponding segment. So our goal is to find the minimal partition of the array on segments, where each segment can be converted to a single element by a series of operations.
Let us define the following dynamic programming table state: 
 

dp[i][j] = value of the single remaining element
when the subarray from index i to j is reduced by a series of operations or is equal to -1 when the subarray can’t be reduced to a single element. 
 

For computing dp[i][j]: 
 

  • If i = j, dp[i][j] = a[i]
  • Iterate from [i, j-1], let the traversing index be k (i <= k < j). For any k if dp[i][k] = dp[k+1][j], this means that subarray [i, j] can be divided into two parts and both the parts have same final value, so these two parts can be combined i.e. dp[i][j] = dp[i][k] + 1.

For computing minimum partitions, we will create another dp table in which the final result is stored. This table has the following state: 
 

dp1[i] = minimum partition of subarray [1: i]
which is the minimal size of array till i after above operations are performed. 
 

Below is the implementation of the above approach: 
 

CPP




// C++ implementation to find the
// minimum length of the array
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the
// length of minimized array
int minimalLength(int a[], int n)
{
 
    // Creating the required dp tables
    int dp[n + 1][n + 1], dp1[n];
    int i, j, k;
 
    // Initialising the dp table by -1
    memset(dp, -1, sizeof(dp));
 
    for (int size = 1; size <= n; size++) {
        for (i = 0; i < n - size + 1; i++) {
            j = i + size - 1;
 
            // base case
            if (i == j)
                dp[i][j] = a[i];
            else {
                for (k = i; k < j; k++) {
 
                    // Check if the two subarray
                    // can be combined
                    if (dp[i][k] != -1
                        && dp[i][k] == dp[k + 1][j])
 
                        dp[i][j] = dp[i][k] + 1;
                }
            }
        }
    }
 
    // Initialising dp1 table with max value
    for (i = 0; i < n; i++)
        dp1[i] = 1e7;
 
    for (i = 0; i < n; i++) {
        for (j = 0; j <= i; j++) {
 
            // Check if the subarray can be
            // reduced to a single element
            if (dp[j][i] != -1) {
                if (j == 0)
                    dp1[i] = 1;
 
                // Minimal partition
                // of [1: j-1] + 1
                else
                    dp1[i] = min(
                        dp1[i],
                        dp1[j - 1] + 1);
            }
        }
    }
 
    return dp1[n - 1];
}
 
// Driver code
int main()
{
 
    int n = 7;
    int a[n] = { 3, 3, 4, 4, 4, 3, 3 };
 
    cout << minimalLength(a, n);
 
    return 0;
}


Java




// Java implementation to find the
// minimum length of the array
import java.util.*;
 
class GFG{
  
// Function to find the
// length of minimized array
static int minimalLength(int a[], int n)
{
  
    // Creating the required dp tables
    int [][]dp = new int[n + 1][n + 1];
    int []dp1 = new int[n];
    int i, j, k;
  
    // Initialising the dp table by -1
    for (i = 0; i < n + 1; i++) {
        for (j = 0; j < n + 1; j++) {
            dp[i][j] = -1;
        }
    }
  
    for (int size = 1; size <= n; size++) {
        for (i = 0; i < n - size + 1; i++) {
            j = i + size - 1;
  
            // base case
            if (i == j)
                dp[i][j] = a[i];
            else {
                for (k = i; k < j; k++) {
  
                    // Check if the two subarray
                    // can be combined
                    if (dp[i][k] != -1
                        && dp[i][k] == dp[k + 1][j])
  
                        dp[i][j] = dp[i][k] + 1;
                }
            }
        }
    }
  
    // Initialising dp1 table with max value
    for (i = 0; i < n; i++)
        dp1[i] = (int) 1e7;
  
    for (i = 0; i < n; i++) {
        for (j = 0; j <= i; j++) {
  
            // Check if the subarray can be
            // reduced to a single element
            if (dp[j][i] != -1) {
                if (j == 0)
                    dp1[i] = 1;
  
                // Minimal partition
                // of [1: j-1] + 1
                else
                    dp1[i] = Math.min(
                        dp1[i],
                        dp1[j - 1] + 1);
            }
        }
    }
  
    return dp1[n - 1];
}
  
// Driver code
public static void main(String[] args)
{
  
    int n = 7;
    int a[] = { 3, 3, 4, 4, 4, 3, 3 };
  
    System.out.print(minimalLength(a, n));
  
}
}
 
// This code contributed by Princi Singh


Python3




# Python3 implementation to find the
# minimum length of the array
import numpy as np
 
# Function to find the
# length of minimized array
def minimalLength(a, n) :
 
    # Creating the required dp tables
    # Initialising the dp table by -1
    dp = np.ones((n + 1,n + 1)) * -1;
    dp1 = [0]*n;
     
    for size in range(1, n + 1) :
        for i in range( n - size + 1) :
            j = i + size - 1;
 
            # base case
            if (i == j) :
                dp[i][j] = a[i];
            else :
                for k in range(i,j) :
 
                    # Check if the two subarray
                    # can be combined
                    if (dp[i][k] != -1 and dp[i][k] == dp[k + 1][j]) :
 
                        dp[i][j] = dp[i][k] + 1;
 
    # Initialising dp1 table with max value
    for i in range(n) :
        dp1[i] = int(1e7);
 
    for i in range(n) :
        for j in range(i + 1) :
 
            # Check if the subarray can be
            # reduced to a single element
            if (dp[j][i] != -1) :
                if (j == 0) :
                    dp1[i] = 1;
 
                # Minimal partition
                # of [1: j-1] + 1
                else :
                    dp1[i] = min(
                        dp1[i],
                        dp1[j - 1] + 1);
 
    return dp1[n - 1];
 
 
# Driver code
if __name__ == "__main__" :
 
    n = 7;
    a = [ 3, 3, 4, 4, 4, 3, 3 ];
    print(minimalLength(a, n));
 
    # This code is contributed by Yash_R


C#




// C# implementation to find the
// minimum length of the array
using System;
 
class GFG{
     
    // Function to find the
    // length of minimized array
    static int minimalLength(int []a, int n)
    {
     
        // Creating the required dp tables
        int [,]dp = new int[n + 1, n + 1];
        int []dp1 = new int[n];
        int i, j, k;
     
        // Initialising the dp table by -1
        for (i = 0; i < n + 1; i++) {
            for (j = 0; j < n + 1; j++) {
                dp[i, j] = -1;
            }
        }
     
        for (int size = 1; size <= n; size++) {
            for (i = 0; i < n - size + 1; i++) {
                j = i + size - 1;
     
                // base case
                if (i == j)
                    dp[i, j] = a[i];
                else {
                    for (k = i; k < j; k++) {
     
                        // Check if the two subarray
                        // can be combined
                        if (dp[i, k] != -1
                            && dp[i, k] == dp[k + 1, j])
     
                            dp[i, j] = dp[i, k] + 1;
                    }
                }
            }
        }
     
        // Initialising dp1 table with max value
        for (i = 0; i < n; i++)
            dp1[i] = (int) 1e7;
     
        for (i = 0; i < n; i++) {
            for (j = 0; j <= i; j++) {
     
                // Check if the subarray can be
                // reduced to a single element
                if (dp[j, i] != -1) {
                    if (j == 0)
                        dp1[i] = 1;
     
                    // Minimal partition
                    // of [1: j-1] + 1
                    else
                        dp1[i] = Math.Min(
                            dp1[i],
                            dp1[j - 1] + 1);
                }
            }
        }
     
        return dp1[n - 1];
    }
     
    // Driver code
    public static void Main(string[] args)
    {
     
        int n = 7;
        int []a = { 3, 3, 4, 4, 4, 3, 3 };
     
        Console.Write(minimalLength(a, n));
    }
}
 
// This code is contributed by Yash_R


Javascript




<script>
 
// Javascript implementation to find the
// minimum length of the array
 
// Function to find the
// length of minimized array
function minimalLength(a, n)
{
 
    // Creating the required dp t0ables
    // Initialising the dp table by -1
    var i, j, k;
    var dp = Array(n+1).fill(Array(n+1).fill(-1));
    var dp1 = Array(n).fill(0);
 
    for (var size = 1; size <= n; size++) {
        for (i = 0; i < n - size + 1; i++) {
            j = i + size - 1;
 
            // base case
            if (i == j)
                dp[i][j] = a[i];
            else {
                for (k = i; k < j; k++) {
 
                    // Check if the two subarray
                    // can be combined
                    if (dp[i][k] != -1
                        && dp[i][k] == dp[k + 1][j])
 
                        dp[i][j] = dp[i][k] + 1;
                }
            }
        }
    }
 
    // Initialising dp1 table with max value
    for (i = 0; i < n; i++)
        dp1[i] = 1000000000;
 
    for (i = 0; i < n; i++)
    {
        for (j = 0; j <= i; j++)
        {
 
            // Check if the subarray can be
            // reduced to a single element
            if (dp[j][i] != -1) {
                if (j == 0)
                    dp1[i] = 2;
 
                // Minimal partition
                // of [1: j-1] + 1
                else
                    dp1[i] = Math.min(dp1[i], dp1[j - 1] + 1);
            }
        }
    }
    return dp1[n - 1];
}
 
// Driver code
var n = 7;
var a = [ 3, 3, 4, 4, 4, 3, 3 ];
document.write(minimalLength(a, n));
 
// This code is contributed by rrrtnx.
</script>


Output: 

2

 

Time complexity: O(N3)
Auxiliary Space: O(N2), where N is the size of the given array.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments